Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mộc Trà
Xem chi tiết
PHẠM THỊ THIÊN HUẾ
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Nguyễn Lê Nhật Linh
18 tháng 12 2016 lúc 20:47

\(m=1\)

Bùi thiện huy thịnh
11 tháng 5 2020 lúc 12:41

Đáp án

m=1

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
11 tháng 5 2020 lúc 14:05

m = 1 nha bạn

hok tốt

Khách vãng lai đã xóa
trang lê
Xem chi tiết
Mỹ Nguyễn ngọc
Xem chi tiết
phạm thanh nga
Xem chi tiết
Empty AA
Xem chi tiết
Nguyễn Gia Huy
Xem chi tiết
ST
12 tháng 2 2020 lúc 21:35

\(\hept{\begin{cases}x-my=2\left(1\right)\\mx-4y=m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}mx-m^2y=2m\left(2\right)\\mx-4y=m-2\left(3\right)\end{cases}}\)

Lấy (2) - (3) => \(\left(4-m^2\right)y=m+2\)  (*)

Để hpt có nghiệm duy nhất <=> pt(*) có nghiệm duy nhất <=> \(4-m^2\ne0\Leftrightarrow m\ne\pm2\)

\(\left(\text{*}\right)\Rightarrow y=\frac{m+2}{4-m^2}=\frac{m+2}{\left(2+m\right)\left(2-m\right)}=\frac{1}{2-m}\)

\(\left(1\right)\Rightarrow x=2+my=2+m\cdot\frac{1}{2-m}=\frac{4-2m+m}{2-m}=\frac{4-m}{2-m}\)

Ta có: \(y-x=\frac{1}{2-m}-\frac{4-m}{2-m}=\frac{1-4+m}{2-m}=\frac{m-3}{2-m}\)

Để \(y>x\Leftrightarrow y-x>0\) hay \(\frac{m-3}{2-m}>0\)

TH1: \(\hept{\begin{cases}m-3>0\\2-m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>3\\m< 2\end{cases}}\) (vô lí)

TH2: \(\hept{\begin{cases}m-3< 0\\2-m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 3\\m>2\end{cases}}\Leftrightarrow2< m< 3\)(tm)

Vậy ...

Khách vãng lai đã xóa
Nguyễn Gia Huy
13 tháng 2 2020 lúc 20:11

thankiu <3

Khách vãng lai đã xóa
you know
Xem chi tiết
you know
20 tháng 7 2018 lúc 18:38

Help me!♥♥!

you know
23 tháng 7 2018 lúc 10:54

từ hệ pt tinh x,y theo m là ra

Kiyotaka Ayanokoji
16 tháng 7 2020 lúc 20:44

Trả lời:

\(\hept{\begin{cases}\left(m+1\right)x-y=3\\mx+y=m\end{cases}}\)    \(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x-\left(m-mx\right)=3\\y=m-mx\end{cases}}\)

                                                  \(\Leftrightarrow\hept{\begin{cases}mx+x-m+mx=3\\y=m-mx\end{cases}}\)

                                                  \(\Leftrightarrow\hept{\begin{cases}2mx+x=m+3\\y=m-mx\end{cases}}\)

                                                  \(\Leftrightarrow\hept{\begin{cases}x.\left(2m+1\right)=m+3\left(3\right)\\y=m-mx\end{cases}}\)

Để hệ phương trình có nghiệm duy nhất \(\Leftrightarrow\)(3) có nghiệm duy nhất 

                                                                  \(\Leftrightarrow2m+1\ne0\)

                                                                 \(\Leftrightarrow m\ne\frac{-1}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{m+3}{2m+1}\\y=\frac{m^2+m-3}{2m+1}\end{cases}}\)

Ta có: \(x+y>0\)

\(\Leftrightarrow\frac{m+3}{2m+1}+\frac{m^2+m-3}{2m+1}>0\)

\(\Leftrightarrow\frac{m^2+2m}{2m+1}>0\)

\(\Leftrightarrow\frac{m.\left(m+2\right)}{2m+1}>0\)

\(\Rightarrow\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)\(\left(TM\right)\)

Vậy \(\hept{\begin{cases}m>0\\-2< m< \frac{-1}{2}\end{cases}}\)thì hệ phương trrinhf có nghiệm duy nhất thỏa mãn \(x+y>0\)

Khách vãng lai đã xóa