giải phương trình
\(\frac{4}{x-2}-x+2=0\)
1.Giải phương trình
1.giải phương trình
\(\frac{x^4}{x^2-4x+4}+\frac{^{x^2}}{x-2}-2=0\)
pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)
đk: x khác 2
Đặt \(\frac{x^2}{x-2}=t\)
Ta có phương trình:
\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)
<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Với t=2 ta có:
\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí
Với t=-2:
\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)
Vậy...
a)Giải phương trình:\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)0
b)Tìm nghiệm nguyên của phương trình: \(2x^2+3xy-2y^2=7.\)
a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có
\(a^2+b-\frac{12b^2}{a^2}=0\)
\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)
b/ \(2x^2+3xy-2y^2=7\)
\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)
Giải phương trình
\(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}+2=0\)
ĐK: x khác -2
Với x = 0 không phải là nghiệm của phương trình
Với x khác 0 ta có:
\(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}+2=0\)
<=> \(\frac{1}{\left(x+\frac{4}{x}\right)+4}+\frac{5}{x+\frac{4}{x}}+2=0\)
Đặt: \(x+\frac{4}{x}=t\)
ta có phương trình: \(\frac{1}{t+4}+\frac{5}{t}+2=0\)
<=> \(t+5t+20+2t^2+8t=0\)
<=> \(t^2+7t+10=0\)
<=> \(\left(t^2+2t\right)+\left(5t+10\right)=0\)
<=> \(\left(t+2\right)\left(t+5\right)=0\)
<=> \(\orbr{\begin{cases}t=-2\\t=-5\end{cases}}\)
Với t = - 2 ta có: \(x+\frac{4}{x}=-2\Leftrightarrow x^2+2x+4=0\Leftrightarrow\left(x+1\right)^2+3=0\) vô nghiệm
Với t = - 5 ta có: \(x+\frac{4}{x}=-5\Leftrightarrow x^2+5x+4=0\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
<=> x = - 1 hoặc x = -4 ( thỏa mãn )
Kết luận:...
Cách khác cô Chi !
ĐKXĐ : \(x\ne-2\)
\(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}+2=0\)
\(\frac{x\left(x^2+4\right)}{\left(x^2+4x+4\right)\left(x^2+4\right)}+\frac{5x\left(x^2+4x+4\right)}{\left(x^2+4\right)\left(x^2+4x+4\right)}+\frac{2\left(x^2+4x+4\right)\left(x^2+4\right)}{\left(x^2+4x+4\right)\left(x^2+4\right)}=0\)
\(x\left(x^2+4\right)+5x\left(x^2+4x+4\right)+2\left(x^2+4x+4\right)\left(x^2+4\right)=0\)
\(14x^3+56x+36x^2+2x^4+32=0\)
\(2\left(x^3+6x^2+12x+16\right)\left(x+1\right)=0\)
\(2\left(x^2+2x+4\right)\left(x+4\right)\left(x+1\right)=0\)
TH1 : \(2\ne0\)
TH2 : \(x^2+2x+4=0\)
Ta có : \(2^2-4.1.4=4-16=-12< 0\)(vô nghiệm)
TH3 : \(x+1=0\Leftrightarrow x=-1\)
TH4 : \(x+4=0\Leftrightarrow x=-4\)
Giải phương trình sau: \(\frac{1}{x+1}+\frac{4}{x+4}-\frac{2}{x+2}-\frac{3}{x+3}=0\)
Giải phương trình sau :
\(\frac{4}{x^2}+\frac{x^2}{4-x^2}+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(pt\Leftrightarrow\left(\frac{4}{x^2}+\frac{x^2}{4-x^2}\right)+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
\(\Leftrightarrow\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)^2-1+\frac{5}{2}\left(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}\right)+2=0\)
Đặt \(\frac{\sqrt{4-x^2}}{x}+\frac{x}{\sqrt{4-x^2}}=t\)pt thành
\(t^2-1+\frac{5}{2}t+2=0\)\(\Rightarrow\orbr{\begin{cases}t=-2\\t=-\frac{1}{2}\end{cases}}\)(loại)
-->PT vô nghiệm
Thắng Nguyễn \(\frac{4}{x^2}\) . T làm ra r , you k cần làm nữa đâu , thanks :))
Giải phương trình
\(\left(x^2+\frac{4}{x^2}\right)-4\left(x-\frac{2}{x}\right)-9=0\)0
\(\left(x^2+\frac{4}{x^2}\right)-4.\left(x-\frac{2}{x}\right)+9=0\)
Đặt \(x-\frac{2}{x}=t\) \(\Rightarrow x^2+\frac{4}{x^2}=t^2+4\)
Phương trình đã cho trở thành:
\(t^2+4-4t+9=0\)
\(\Leftrightarrow t^2-4t+13=0\)
\(\Delta=\left(-4\right)^2-4.1.13\)
\(=16-52=-36< 0\)
\(\Rightarrow\)Phương trình vô nghiệm
giải phương trình: \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)
Ta có :\(pt\Leftrightarrow\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left(\frac{2\left(x-2\right)}{x-4}\right)^2=0\)
Đặt \(\frac{x+1}{x-2}=a;\frac{x-2}{x-4}=b\)
\(\Rightarrow a^2+ab-6b^2=0\)\(\Leftrightarrow\left(a+3b\right)\left(a-2b\right)=0\Rightarrow\orbr{\begin{cases}a+3b=0\\a-2b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=-3b\\a=2b\end{cases}}}\)
Đến đây thao vào giải tiếp
Ta có :\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)(1)
<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-3\left[\frac{2\left(x-2\right)}{x-4}\right]^2=0\)
<=> \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-2}.\frac{x-2}{x-4}-12\left(\frac{x-2}{x-4}\right)^2=0\)
Đặt \(\frac{x+1}{x-2}=a\); \(\frac{x-2}{x-4}=b\)
khi đó (1) <=> \(a^2+ab-12b^2=0\)
<=> \(a^2+4ab-3ab-12b^2=0\)
<=> \(a\left(a+4b\right)-3b\left(a+4b\right)=0\)
<=> \(\left(a+4b\right)\left(a-3b\right)=0\)
<=> \(\orbr{\begin{cases}a+4b=0\\a-3b=0\end{cases}}\)<=> \(\orbr{\begin{cases}a=-4b\\a=3b\end{cases}}\)
tôi mới làm ngang đây thì chịu rồi giải tiếp giúp tôi với! OK?
giải phương trình: \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\\ \)
\(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)
\(\Leftrightarrow\frac{\left(x+1\right)^2}{\left(x-2\right)^2}+\frac{x+1}{x-4}-\frac{3\left(2x-4\right)^2}{\left(x-4\right)^2}=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-4\right)^2+\left(x+1\right)\left(x-2\right)^2\left(x-4\right)-3\left(2x-4\right)^2\left(x-2\right)^2=0\)
\(\Leftrightarrow-\left(x-3\right)\left(5x-4\right)\left(2x^2-9x+16\right)=0\)
Mà \(2x^2-6x+16\ne0\) nên:
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\5x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{4}{5}\end{cases}}\)
Vậy: nghiệm phương trình là: \(x=3;x=\frac{4}{5}\)
Bạn đặt ẩn phụ và làm nhé :
Đặt \(a=\frac{x+1}{x-2},b=\frac{x-2}{x-4}\Rightarrow ab=\frac{x+1}{x-4}\)
Khi đó pt có dạng :
\(a^2+ab-12b^2=0\)
Giải phương trình: \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)
giải phương trình: \(\left(\frac{x+1}{x-2^2}\right)^2+\frac{x+1}{x-4}-12\cdot\left(\frac{x-2}{x-4}\right)^2=0\)