Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Phạm Ngọc Phước
Xem chi tiết
NGUYỄN THẾ HIỆP
22 tháng 2 2017 lúc 17:20

ĐỀ sai nhé: \(a^2+b^2=4\Rightarrow4-a^2< 0\)

Vậy làm sao tồn tại căn của nó chứ

Đỗ Phạm Ngọc Phước
22 tháng 2 2017 lúc 17:26

ủa ,4-a^2=b^2 mà bạn

NGUYỄN THẾ HIỆP
22 tháng 2 2017 lúc 17:40

à nhầm đề của bạn là \(a^2-4\)kia kìa, bạn xem lại đề đi nhé

Lay Thành Đạt
Xem chi tiết
chử mai
Xem chi tiết
Võ Thị Quỳnh Giang
30 tháng 10 2017 lúc 21:38

ta có: \(a^2+b^2=1\Rightarrow\hept{\begin{cases}a^2\le1\\b^2\le1\end{cases}\Rightarrow\hept{\begin{cases}0\le a\le1\\0\le b\le1\end{cases}\Rightarrow}\hept{\begin{cases}a^3\le a^2\\b^3\le b^2\end{cases}}.}\)

\(\Rightarrow a^3+b^3\le a^2+b^2=1\)

\(\Rightarrow a^3+b^3\le1\)   (*)

Mặt khác ta có:  \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) (BĐT bu-nhi-a)

\(\Leftrightarrow\left(a+b\right)^2\le2\) ( vì a^2 +b^2 =1)

\(\Leftrightarrow a+b\le\sqrt{2}\)  (1)

mà \(\left(a^2+b^2\right)^2\le\left(a+b\right)\left(a^3+b^3\right)\) (BĐT bu-nhi-a)

\(\Leftrightarrow1\le\left(a+b\right)\left(a^3+b^3\right)\)   (2)

Thay (1) vào(2) ta đc: \(1\le\sqrt{2}\left(a^3+b^3\right)\)

\(\Leftrightarrow a^3+b^3\ge\frac{1}{\sqrt{2}}\)   (**)

Từ (*);(**)=> đpcm

Phan Thanh Tịnh
Xem chi tiết
Cô Hoàng Huyền
7 tháng 3 2018 lúc 8:37

Tịnh tách các bài ra nhé.

Khởi My
Xem chi tiết
Củ Lạc Giòn Tan
Xem chi tiết
Đinh Đức Hùng
24 tháng 3 2017 lúc 18:57

\(\frac{a+b}{2}.\frac{a^2+b^2}{2}\le\frac{a^3+b^3}{2}\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2+b^2\right)}{4}\le\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2}\)

\(\Leftrightarrow\frac{a^2+b^2}{4}\le\frac{a^2-ab+b^2}{2}\)

\(\Leftrightarrow\frac{a^2+b^2}{2}\le a^2-ab+b^2\)

\(\Leftrightarrow a^2+b^2\le2a^2-2ab+2b^2\)

\(\Leftrightarrow0\le a^2-2ab+b^2\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (Luôn đúng với mọi a ; b)

Phan Quỳnh
Xem chi tiết
Witch Rose
15 tháng 8 2017 lúc 10:48

Ta cm bằng cách bđ tương đương 

\(Cm:ab\left(a+b\right)^2\le\frac{1}{64}\Leftrightarrow64ab\left(a+b\right)^2\le1\Leftrightarrow8\left(a+b\right)\sqrt{ab}\le1.\)

Ta có:

\(8\left(a+b\right)\sqrt{ab}=4.\left(a+b\right).2\sqrt{ab}\le4.\frac{a+b+2\sqrt{ab}}{4}=\left(\sqrt{a}+\sqrt{b}\right)^2=1\left(đpcm\right)\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{4}\)

Le Trang Nhung
Xem chi tiết
Thắng Nguyễn
1 tháng 3 2017 lúc 13:11

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

Hoàng Phúc
1 tháng 3 2017 lúc 21:04

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

huỳnh minh quí
2 tháng 3 2017 lúc 21:20

Bài 3 

\(VT=a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}+b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}+c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\hept{\begin{cases}a^2+ab+b^2\ge3ab\\b^2+bc+c^2\ge3bc\\c^2+ca+a^2\ge3ca\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{ab\left(a+b\right)}{a^2+ab+b^2}\le\frac{a+b}{3}\\\frac{bc\left(b+c\right)}{b^2+bc+c^2}\le\frac{b+c}{3}\\\frac{ca\left(c+a\right)}{c^2+ca+a^2}\le\frac{c+a}{3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a-\frac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\frac{a+b}{3}\\b-\frac{bc\left(b+c\right)}{b^2+bc+c^2}\ge b-\frac{b+c}{3}\\c-\frac{ca\left(c+a\right)}{c^2+ca+a^2}\ge c-\frac{c+a}{3}\end{cases}}\)

\(\Rightarrow VT\ge a+b+c-\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow VT\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)( đpcm )

Dung Nguyễn
Xem chi tiết