Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
A TV
Xem chi tiết
Phạm Hoàng Long
Xem chi tiết
Heo Mập
Xem chi tiết
Nguyễn Mai Anh
Xem chi tiết
ngo anh tu
Xem chi tiết
Loveduda
Xem chi tiết
Mysterious Person
2 tháng 7 2017 lúc 7:06

\(M=a\left(a+b\right)\left(a+c\right)=a\left(a^2+ac+ba+bc\right)\)

\(=a^3+a^2c+a^2b+abc=a^2\left(a+b+c\right)+abc\)

\(=a^20+abc=abc\) (1)

\(N=b\left(b+c\right)\left(b+a\right)=b\left(b^2+ba+cb+ca\right)\)

\(=b^3+b^2a+b^2c+abc=b^2\left(a+b+c\right)+abc\)

\(=b^20+abc=abc\) (2)

\(P=c\left(c+a\right)\left(c+b\right)=c\left(c^2+cb+ac+ab\right)\)

\(=c^3+c^2b+c^2a+abc=c^2\left(a+b+c\right)+abc\)

\(c^20+abc=abc\) (3)

từ (1);(2)và(3) ta có : \(M=N=P=abc\)

vậy khi \(\left(a+b+c\right)=0\)thì \(M=N=P\) (đpcm)

Trần Dương
2 tháng 7 2017 lúc 7:09

Hỏi đáp Toán

Chúc bạn học tốt !!!

四种草药 - TFBoys
Xem chi tiết
Ngo Tung Lam
Xem chi tiết
๖Fly༉Donutღღ
12 tháng 9 2017 lúc 20:05

\(a+b+c=0\)

\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(M=a\left(a+b\right)\left(a+c\right)=a.\left(-c\right).\left(-b\right)=abc\)

\(N=b\left(b+c\right)\left(a+b\right)=b.\left(-a\right).\left(-c\right)=abc\)

\(P=c\left(b+c\right)\left(a+c\right)=c.\left(-a\right).\left(-b\right)=abc\)

\(\Rightarrow\)\(M=N=P\)

Trần Thảo
Xem chi tiết
Yen Nhi
22 tháng 11 2021 lúc 11:36

Answer:

Có vài chỗ mình sửa lại đề nhé!

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)

\(\Rightarrow\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{1}{3}\)

\(\Rightarrow3a=b+c+d\)

\(\Rightarrow3b=a+c+d\)

\(\Rightarrow3c=a+b+d\)

\(\Rightarrow3d=a+b+c\)

Ta có: 

\(3a+3b=b+c+d+a+c+d\)

\(\Rightarrow3.\left(a+b\right)=a+b+2c+2d\)

\(\Rightarrow2.\left(a+b\right)=2.\left(c+d\right)\)

\(\Rightarrow a+b=c+d\)

Tương tự: 

\(\Rightarrow b+c=a+d\)

\(\Rightarrow c+d=a+b\)

\(\Rightarrow d+a=b+c\)

Ta có: 

\(M=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)

\(=\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+d}{c+d}+\frac{d+a}{d+a}\)

\(=1\)

Khách vãng lai đã xóa