Tính tổng 1/6+ 1/12+ 1/20+ ........+ 1/90
Tính tổng s= 1/6+ 1/12+ 1/20+ ........+ 1/90
=1/2 + (1/2*3+1/3*4) + (1/4*5+1/5*6) + (1/6*7+1/7*8) + (1/8*9+1/9*10)
=1/2 + 1/2*3.(1+1/2) + 1/2*5.(1/2+1/3) + 1/2*7.(1/3+1/4) + 1/2*9.(1/4+1/5)
=1/2 + 1/2*3.(3/2) + 1/2*5.(5/6) + 1/2*7.(7/12) + 1/2*9.(9/20)
=1/2 + 1/4 + 1/12 + 1/24 + 1/40
=9/10
6 = 2 x 2 + 2 = 2(2+1)
12 = 3 x 3 + 3 = 3(3+1)
20 = 4 x 4 + 4 = 4(4+1)
...
90 = 9 x 9 + 9 = 9(9+1)
Ta có đồng nhất thức sau
1/[n(n+1)] = 1/n - 1/(n+1)
Vậy
1/6 = 1/2 - 1/3
1/12 = 1/3 - 1/4
1/20 = 1/4 - 1/5
....
1/90 = 1/9 - 1/110
S = 1/2 -1/3+1/3-1/4+..............+1/9 -1/10
Tổng là 1/2 + 1/2 - 1/10 = 1 - 1/10 = 9/10
\(S=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(\Rightarrow S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)(áp dụng quy tắc dấu ngoặc )
\(S=\frac{1}{2}-\left(\frac{1}{3}-\frac{1}{3}\right)-\left(\frac{1}{4}-\frac{1}{4}\right)-...-\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\)
\(S=\frac{1}{2}-\frac{1}{10}\)
\(S=\frac{2}{5}\)
Tính tổng:
1/2+1/6+1/12+1/20+...+1/90
giúp mình mình tick cho ba cái
=1/1x2+1/2x3+1/3x4+.....+1/9x10
=1/1-1/2+1/2-1/3+1/3-1/4+.........-1/10
=1/1-1/10
=1/9
1/2+1/6+....+1/90
=1/1.2 +1/2.3 +1/3.4+.....+1/9.10
=1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10
=1-1/10=9/10
k 3 cái sao đc
tính tổng sau:
A=1/6+1/12+1/20+...+1/72=1/90
giải giùm mình nha
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}=\frac{1}{9.10}\)
tới đây chắc bạn giải đc rồi ha!
nếu k biết cứ nhắn hỏi mình
bn giải giùm mình ghi các bước ra nha
Tính tổng A= 1-5/6+7/12-9/20+11/30-13/42+15/56-17/72+1/90
Tính nhanh tổng sau : 1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+...+\left(1-\dfrac{1}{90}\right)\\ =\left(1+1+...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\\ =9-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\\ =9-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ =9-\left(1-\dfrac{1}{10}\right)=9-\dfrac{9}{10}=\dfrac{81}{10}\)
A=1/2+ 5/6 + 11/12 + 19/20 + 29 30 + 41/42 + 55/56 + 71/72 + 89/90
TÍNH TỔNG
S=1/2+5/6+11/12+19/20+41/42+55/56+71/72+89/90
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+...+\frac{89}{90}\)
= \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+...+\left(1-\frac{1}{90}\right)\)
= \(\left(1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)8 số hạng 1
= \(\left(1.8\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\right)\)
= \(8-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
= \(8-\left(1-\frac{1}{10}\right)\)
= \(8-\frac{9}{10}\)
= \(\frac{71}{10}\)
Tính nhanh
1/6+1/12+1/20+...+1/90+1/110 (dạng đủ)
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{90}+\dfrac{1}{110}\)
\(=\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...+\dfrac{1}{9x10}+\dfrac{1}{10x11}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=\dfrac{1}{2}-\dfrac{1}{11}=\dfrac{11}{22}-\dfrac{2}{22}=\dfrac{9}{22}\)
1/6+1/12+1/20+1/90+1/110
=1/2x3+1/3x4+1/4x5+...+1/9x10+1/10x11
=1/2-1/3+1/3-1/4+1/4-1/5+1/5-...+1/9-1/10+1/10-1/11
=1/2-1/11=9/22
Tính tổng:
S= 1/2 + 1/6 + 1/12 + ...+ 1/90
S= 1/2 + 1/6 + 1/12 + ...+ 1/90
S=1/1.2 + 1/2.3 +1/3.4+...+1/9.10
S=1-1/2 + 1/2-1/3 + 1/3-1/4+...+1/9-1/10
S=(1-1/10)+(1/2-1/2)+(1/3-1/3)+...+(1/9-1/9)
S=9/10+0+0+...+0
S=9/10Chúc bn học tốt =))
Tính nhanh:
a) 5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
b) Tính tổng của 10 phân số trong phép cộng sau:
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/7289/90
\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{38}{5}\)
`Answer:`
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(=8-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\frac{2}{5}\)
\(=\frac{38}{5}\)
b) \(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=\frac{81}{10}\)