Cho tam giác ABC vuông tại A (AB nhỏ hơn AC) và các điểm M thuộc cạnh AC, H thuộc cạnh BC sao cho MH vuông góc với BC và MH=HB. Chứng minh rằng AH là tia phân giác của góc A
Cho tam giác ABC vuông tại A( AB < AC) và các điểm M thuộc cạnh AC, H thuộc cạnh BC sao cho MH vuông góc BC và MH=HB. Chứng minh rằng AH là tia phân giác góc A
Cho tam giác ABC vuông tại A ( AB < AC ) và các điểm M thuộc cạnh AC , H thuộc cạnh BC sao cho MH vuông góc BC và MH = HB . Chứng mihn AH là tia phân giác của góc A
Kẻ \(HI\perp AB,HK\perp AC\)
Ta có : \(\widehat{HMK}=\widehat{B}\) ( cùng phụ với \(\widehat{C}\) )
Xét \(\Delta HKM\) và \(\Delta HIB\)có :
\(\widehat{K}=\widehat{I}=90^o\)
\(HM=HB\left(gt\right)\)
\(\widehat{HMK}=\widehat{B}\left(cmt\right)\)
Suy ra \(\Delta HKM=\Delta HIB\) ( cạnh huyền - góc nhọn )
\(\Rightarrow HK=HI\) ( 2 cạnh tương ứng )
Xét \(\Delta HIA\) và \(\Delta HKA\)có :
\(\widehat{I}=\widehat{K}=90^o\)
HA : cạnh chung
HI = HK ( cmt)
Suy ra \(\Delta HIA=\Delta HKA\) ( cạnh huyền - cạnh góc vuông )
\(\Rightarrow\widehat{A}_1=\widehat{A}_2\)
Do đó AH là tia phân giác của góc A
Chúc bạn học tốt !!!
Cho tam giác ABC vuông tại A ( AB < AC ) và các điểm M thuộc AC , H thuộc BC sao cho MH vuông góc với BC và MH = HB . Chứng minh AH là phân giác của góc A
Cho tam giác ABC vuông tại A ( AB < AC ) và các điểm M thuộc cạnh AC, H thuộc cạnh BC sao cho MH vuông với BC và MH = HB.
CMR: AH là tia phân giác góc A
Cho tam giác ABC có M là trung điểm của BC và AM là tia phân giác của tam giác ABC. CMR: Tam giác ABC là tam giác cân
Cho tam giác ABC vuông tại A có AB<AC và điểm M thuộc AC, H thuộc BC sao cho MH vuông góc với BC và MH=HB. Chứng minh rằng : AH là phân giác góc A
Bạn tự vẽ hình nhé.
Kẻ HI vuông góc với AB tại I, HK vuông góc với AC tại K.
Xét tam giác HMC vuông tại H, ta có: \(\widehat{HMC}+\widehat{C}=90^o\)(1)
Xét tam giác ABC vuông tại A, ta có: \(\widehat{B}+\widehat{C}=90^o\)(2)
Từ (1) và (2) => \(\widehat{HMC}=\widehat{B}\)
Xét tam giác BHI vuông tại I và tam giác MHK vuông tại K có:
BH = MH (gt)
\(\widehat{IBH}=\widehat{HMK}\) (cmt)
=> Tam giác BHI = tam giác MHK
=> IH = HK
Xét tam giác IHA vuông tại I và tam giác KHA vuông tại K có:
cạnh huyển AH chung
IH = HK (cmt)
=> Tam giác IHA = tam giác KHA
=> \(\widehat{IAH}=\widehat{HAK}\)
=> AH là tia phân giác của góc A.
1) Cho tam giác ABC vuông tại A (AB<AC) và các điểm M thuộc AC, H thuộc BC. Sao cho MH Vuông góc với BC và MH vuông góc với BC. Sao cho MH vuông góc với BC và MH vuông góc với HB. C/m AH là phân giác của góc A.
Cho tam giác ABC vuông tại A AB AC . M là điểm thuộc cạnh AC. Kẻ MH vuông góc BC H thuộc BC , biết MH HB. Kẻ HK vuông góc AC K thuộc AC , kẻ HI vuông góc AB I thuộc AB . Chứng minh a HK HI b AH là phân giác của góc BAC.
ta có:
Cho tam giác ABC vuông tại A , ( AB < AC ) . lấy M thuộc canh AC , H thuộc BC sao cho MH vuông góc với BC , MH = HB . K ẻ HI vuông góc với AB tại I , HK vuông góc với AC tại K . Chứng minh rằng ;
a) tam giác BHI = tam giác MHK
b) AH là tia phân giác của góc BAC
Cho tam giác ABC vuông tại A ( AB<AC ) và các điểm M thuộc AC , H thuộc BC sao cho MH vuông góc với BC và MH = HB . CMR : AH là phân giác của góc A.