Tìm GTLN của:\(A=\frac{x^4+1}{\left(x^2+1\right)^2}\)
Giúp mình với :
a)Tìm GTNN của A = \(\left|x^2-x+1\right|+\left|x^2-x-2\right|\)
b ) tìm GTNLN của D =\(\frac{x+2}{\left|x\right|}\)với x khác 0 và x thuộc Z
c) tìm GTLN của F=\(\frac{7x-8}{2x-3}\)với x thuộc N
d) Timf GTNN của G=\(x\left(x+1\right)+x+2\)
e) Tìm GTLN của J = \(x^4+2x^2-7\)
f) Tìm GTLN của biểu thức N = \(\left(x+2\right)^2-4x+2\)
G ) tìm GTLN của T= \(4\left(3-\left|x-1\right|\right)+\left|1-x\right|\)
Cho biểu thức A = \(\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
a) Rút gọn A
b) Tìm x để A > 0
c) Tìm x để \(x^2+3x+2=0\)
d) Tìm x để A đạt GTLN , tìm GTLN đó
a) \(-ĐKXĐ:x\ne\pm2;1\)
Rút gọn : \(A=\left(\frac{1}{x+2}-\frac{2}{x-2}-\frac{x}{4-x^2}\right):\frac{6\left(x+2\right)}{\left(2-x\right)\left(x+1\right)}\)
\(=\left(\frac{1}{x+2}+\frac{-2}{x-2}+\frac{x}{x^2-4}\right).\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{\left(-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{x}{\left(x-2\right)\left(x+2\right)}\right]\)\(.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\left[\frac{x-2-2x-4+x}{\left(x-2\right)\left(x+2\right)}\right].\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)
\(=\frac{-6}{\left(x-2\right)\left(x+2\right)}.\frac{\left(2-x\right)\left(x+1\right)}{6\left(x+2\right)}\)\(=\frac{x+1}{\left(x+2\right)^2}\)
b) \(A>0\Leftrightarrow\frac{x+1}{\left(x+2\right)^2}>0\Leftrightarrow\orbr{\begin{cases}x+1< 0;\left(x+2\right)^2< 0\left(voly\right)\\x+1>0;\left(x+2\right)^2>0\end{cases}}\)
\(\Leftrightarrow x>1;x>-2\Leftrightarrow x>1\)
Vậy với mọi x thỏa mãn x>1 thì A > 0
c) Ta có : \(x^2+3x+2=0\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy x = -1;-2
Cho biểu thức K=\(\left[\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+6}\right].\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)
a) tìm điều kiện xác định rồi rút gọn x
b) tìm gtln của K
Cho biểu thức \(A=\frac{3}{x+4}-\frac{x^2-x}{x+4}.\frac{2x-5}{\left(x-2\right)\left(x^2+4x\right)}-\frac{17}{\left(x+4\right)^2}\)
a) Tìm ĐKXĐ và rút gọn A
b) Tìm giá trị của x để 18A=1
c) Tìm GTLN của A
--> Bản gốc đây ạ ==
a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\)
\(A=\frac{3}{x+4}-\frac{x\left(x-1\right)}{x+4}\times\frac{2x-5}{x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3\left(x+4\right)}{\left(x+4\right)^2}-\frac{x\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)x\left(x-2\right)\left(x+4\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{3x+12}{\left(x+4\right)^2}-\frac{\left(x-1\right)\left(2x-5\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{17}{\left(x+4\right)^2}\)
\(=\frac{\left(3x+12\right)\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}-\frac{2x^2-7x+5}{\left(x+4\right)^2\left(x-2\right)}-\frac{17\left(x-2\right)}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{3x^2+6x-24-2x^2+7x-5-17x+34}{\left(x+4\right)^2\left(x-2\right)}\)
\(=\frac{x^2-4x+5}{\left(x+4\right)^2\left(x-2\right)}=\frac{x^2-4x+5}{x^3+6x^2-32}\)
b) \(18A=1\)
<=> \(18\times\frac{x^2-4x+5}{x^3+6x^2-32}=1\)( ĐK : \(\hept{\begin{cases}x\ne0\\x\ne2\\x\ne-4\end{cases}}\))
<=> \(\frac{x^2-4x+5}{x^3+6x^2-32}=\frac{1}{18}\)
<=> 18( x2 - 4x + 5 ) = x3 + 6x2 - 32
<=> 18x2 - 72x + 90 = x3 + 6x2 - 32
<=> x3 + 6x2 - 32 - 18x2 + 72x - 90 = 0
<=> x3 - 12x2 + 72x - 122 = 0
Rồi đến đây chịu á :)
Ý lộn == là \(\frac{x^2-2x}{x+4}\)ạ ==
Cho biểu thức \(M=\left(1-\frac{6-2x^3}{x^6-9}\right).\frac{4}{x^5+3x^2}:\left(\frac{6x^6-24}{x^9+6x^6+9x^3}:\left(\frac{3x^2}{2}+\frac{3}{x}\right)\right)\)
a/ Rút gọn M
b/ Tìm các giá trị nguyên của x để M đạt GTLN. Tìm GTLN đó
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Tìm GTLN:
a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)
b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)
a)\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\)
Vì \(-\left|x+\frac{3}{2}\right|\)\(\le\)0
Suy ra:\(\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)
Dấu = xảy ra khi \(x+\frac{3}{2}=0\)
\(x=-\frac{3}{2}\)
Vậy Max A=\(\frac{1}{4}\) khi \(x=-\frac{3}{2}\)
b)\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)
Vì \(-\left|x-\frac{4}{3}\right|\le0;-\left|y+\frac{1}{2}\right|\le0\)
Suy ra:\(\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)
Dấu = xảy ra khi \(x-\frac{4}{3}=0;x=\frac{4}{3}\)
\(y+\frac{1}{2}=0;y=-\frac{1}{2}\)
Vậy Max B=\(\frac{5}{3}\) khi \(x=\frac{4}{3};y=-\frac{1}{2}\)
a/ Ta có ; \(\left|x+\frac{3}{2}\right|\ge0\Rightarrow-\left|x+\frac{3}{2}\right|\le0\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}\)
Vậy BT đạt giá trị lớn nhất bằng 1/4 khi x = -3/2
b/ \(\begin{cases}\left|x-\frac{4}{3}\right|\ge0\\\left|y+\frac{1}{2}\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\le0\\-\left|y+\frac{1}{2}\right|\le0\end{cases}\)
\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)
\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}\)
Vậy BT đạt giá trị lớn nhất bằng 5/3 khi x = 4/3 , y = -1/2
a)Đặt \(A=\frac{1}{4}-\left|x+\frac{3}{2}\right|\)
Ta thấy: \(\left|x+\frac{3}{2}\right|\ge0\)
\(\Rightarrow-\left|x+\frac{3}{2}\right|\le0\)
\(\Rightarrow\frac{1}{4}-\left|x+\frac{3}{2}\right|\le\frac{1}{4}-0=\frac{1}{4}\)
\(\Rightarrow A\le\frac{1}{4}\)
Dấu = khi \(x=-\frac{3}{2}\)
Vậy MaxA=\(\frac{1}{4}\Leftrightarrow x=-\frac{3}{2}\)
b)Đặt \(B=\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\)
Ta thấy: \(\begin{cases}\left|x-\frac{4}{3}\right|\\\left|y+\frac{1}{2}\right|\end{cases}\ge0\)
\(\Rightarrow\begin{cases}-\left|x-\frac{4}{3}\right|\\-\left|y+\frac{1}{2}\right|\end{cases}\)\(\le0\)
\(\Rightarrow-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le0\)
\(\Rightarrow\frac{5}{3}-\left|x-\frac{4}{3}\right|-\left|y+\frac{1}{2}\right|\le\frac{5}{3}-0=\frac{5}{3}\)
\(\Rightarrow B\le\frac{5}{3}\)
Dấu = khi \(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)
Vậy MaxB=\(\frac{5}{3}\Leftrightarrow\)\(\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{2}\end{cases}\)