rut gon bieu thuc
(2x-1).(x-2)
rut gon bieu thuc: 2x2(x-2) - 2x(x-1)(x+1)
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)=2x^3-4x^2-2x^3+2x=-4x^2+2x=-2x\left(2x-1\right)\)
\(2x^2\left(x-2\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=2x^3-4x^2-2x\left(x^2-1\right)\)
\(=2x^3-4x^2-2x^3+2x=-4x^2+2x\)
rut gon bieu thuc 2ax^2-a(1+2x^2)-[a-x(x+a)]
2ax^2-a(1+2x^2)-[a-x(x+a)]
=2ax2-2ax2+a+x2-ax+a
=(2ax2-2ax2)-(a+a)+ax+x2
=0-2a+ax+x2
=x2+ax-2a
cho A= (2x-1)^2 -5x.(x-1)+2.(x+1).(x-2) rut gon bieu thuc A
\(A=\left(2x-1\right)^2-5x\left(x-1\right)+2\left(x+1\right)\left(x-2\right)\)
\(=4x^2-4x+1-5x^2+5x+2\left(x^2-x-2\right)\)
\(=x^2-x-3\)
rut gon bieu thuc :P=5x(x-3)(x+3)-(2x-3)^2+34x(x+2)-5(x+2)^3+25x-1
\(:P=5x(x-3)(x+3)-(2x-3)^2+34x(x+2)-5(x+2)^3+25x-1\)
\(P=5x(x^2-9)-(4x^2-12x+9)+34x^2+68x-5(x^3+6x^2+12x+8)+25-1\)
\(P=5x^3-45x-4x^2+12x-9+34x^2+68x-5x^3-30x^2-60x-40+25-1\)
\(P=(5x^3-5x^3)+(34x^2-4x^2-30x^2)+(12x-45x++68x+25x-60x)-(9+1)\)
\(P=-10\)
Rut gon bieu thuc sau: 2x*(2x-1)2-3x*(x+3)2-4x*(x+1)2
rut gon cac bieu thuc
2x(2x+1)2 - 3x(x+3)(x-3) - 4x (x+1) 2
Ta có 2x(2x + 1)2 - 3x(x + 3)(x - 3) - 4x(x + 1)2
= 2x(4x2 + 4x + 1) - 3x(x2 - 9) - 4x(x2 + 2x + 1)
= 8x3 + 8x2 + 2x - 3x3 + 27x - 4x3 - 8x2 - 4x
= 8x3 - 3x3 - 4x3 + 8x2 - 8x2 + 2x + 27x - 4x
= x3 + 25x
a oi hinh nhu sai r con +16x2 nua co a , anh tinh lai ho e duoc kh
Kiều Trinh Vũ ko có + 16x2 nhá vì 8x2 - 8x2 = 0 nhá
rut gon bieu thuc (2x+3) mũ 2 +(2x+5) mũ 2
Lời giải:
$(2x+3)^2+(2x+5)^2=4x^2+12x+9+4x^2+20x+25$
$=8x^2+32x+34$
rut gon bieu thuc
B= (2x+1)2-(2x+1)(2x-1)
=> B= (2x+1)(2x+1-2x+1)
=> B=(2x+1).2 =>B=4x+2
\(\left(2x+1\right)^2-\left(2x+1\right)\left(2x-1\right)\)
\(=4x^2+4x+1-4x^2+1=4x+2=2\left(x+2\right)\)
chúc bn hc tốt ^^
Ta có B=(2x+1)2-(2x+1)(2x-1)
=>B=4x^2+1-4x^2-2x+2x+1
=>B=(4x^2-4x^2)+(-2x+2x)+(1+1)
=>B=2
Rut gon bieu thuc A=\(\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
A2=x+\(\sqrt{2x-1}\)+x-\(\sqrt{2x-1}\)- 2\(\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}\)
A2=2x-2\(\sqrt{x^2-2x+1}\)
A2=2x-2(x-1)=1
=>A=1(vì a>0)
Ta có: \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\) \(\left(ĐK:x\ge\frac{1}{2}\right)\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{2x-1+2\sqrt{2x-1}+1}-\sqrt{2x-1-2\sqrt{2x-1}+1}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
\(\Leftrightarrow A\sqrt{2}=\sqrt{2x-1}+1-\sqrt{2x-1}+1\)
\(\Leftrightarrow A\sqrt{2}=2\)
\(\Leftrightarrow A=\sqrt{2}\)