\(\frac{2}{x-3}-\frac{27}{x^3-27}=\frac{3}{x^2+3x+9}\)
\(\left(\frac{X^2+3X}{X^3+3X^2+9X+27}+\frac{3}{X+9}\right):\left(\frac{1}{X-3}-\frac{6X}{X^3-3X^2+9X-27}\right)\)
= \(\left[\frac{x.\left(x+3\right)}{\left(x+3\right).\left(x^2+9\right)}+\frac{3}{x+9}\right]:\left[\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\) ]
\(=\frac{x+3}{x^2-9}.\frac{\left(x-3\right).\left(x^2+9\right)}{x^2+9-6x}\)
= \(\frac{\left(x-3\right).\left(x+3\right)}{\left(x-3\right)^2}\)
= \(\frac{x+3}{x-3}\)
k mik nhé. Plssss~
Cho biểu thức P=\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
rút gọn biểu thức:
P = \(\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(ĐKXĐ:x\ne\pm3\)
\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)
\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)
BÀI 5 : CHO
E=\(\frac{x^2+6x+9}{x^3+3x^2-27x+27}\). \(\left(\frac{x^2+6x+9}{x^3+3x^2-27x+27}+\frac{2}{3x}:\left(\frac{1}{x}+\frac{1}{3}\right)^2\right)\)
F=\(\frac{3+x}{3-x}\) .\(\frac{x^2-6x+9}{9x^2}\).\(\left(\frac{3}{3-x}-\frac{9}{27+x^3}.\frac{x^2-3x+9}{3-x}\right)\)
a, RÚT GỌN E VÀ F
Giái cac phương trình sau :
a,\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^2-1}\)
b,\(\frac{10}{3}-\frac{7x+2}{6x+8}=2+\frac{3x+1}{4x+!2}\)
c,\(\frac{2}{x-3}-\frac{27}{x^3-27}=\frac{3}{x^2+3x+9}\)
Cho biểu thức \(P=\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
a) Rút gọn P
b) Với x> 0 thì P không nhận những giá trị nào
c) Tìm x nguyên để P nguyên
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)
b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)
c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
sau do tinh
cau nay la toan lp 8 nha
Rút gon: \(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}\right)\): \(\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
=\(\left[\frac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
=\(\left[\frac{x\left(x-3\right)}{\left(x^2+9\right)\left(x-3\right)}\right]\):\(\left[\frac{1}{x-3}-\frac{6x}{\left(x^2+9\right)\left(x-3\right)}\right]\)
=\(\frac{x}{x^2+9}\):\(\left[\frac{x^2+9}{\left(x-3\right)\left(x^2+9\right)}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
=\(\frac{x}{x^2+9}\):\(\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)
=\(\frac{x}{x^2+9}\):\(\frac{x-3}{x^2+9}\)
=\(\frac{x}{x^2+9}\).\(\frac{x^2+9}{x-3}\)
=\(\frac{x}{x-3}\)
Tim x biet
c) (x - 2)(x + 3)>0
d) \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
Bài làm:
c) \(\left(x-2\right)\left(x+3\right)>0\)
Ta xét 2 trường hợp sau:
+ Nếu \(\hept{\begin{cases}x-2>0\\x+3>0\end{cases}\Rightarrow}\hept{\begin{cases}x>2\\x>-3\end{cases}\Rightarrow}x>2\)
+ Nếu \(\hept{\begin{cases}x-2< 0\\x+3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< -3\end{cases}}\Rightarrow x< -3\)
Vậy \(\orbr{\begin{cases}x>2\\x< -3\end{cases}}\)
d) \(-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Leftrightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Leftrightarrow3x=\frac{1}{9}\)
\(\Leftrightarrow x=\frac{1}{27}\)
Vậy \(x=\frac{1}{27}\)
Học tốt!!!!