Những câu hỏi liên quan
Bùng nổ Saiya
Xem chi tiết
Hoàng Thị Hoài
2 tháng 4 2018 lúc 13:57

mk làm phần a thôi nhé

Xét tam giác ABE và tam giác ADC có :

AB = AD ( tam giác ABD đều )

Góc BAE = góc DAC ( góc BAC + 60 độ )

AE = AC ( tam giác ACE đều ) 

Suy ra tam giác ABE =tam giác ADC ( c .g.c)

Vậy tam giác ABE = tam giác ADC ( c.g.c )

Bình luận (0)
Nguyễn mai linh
21 tháng 2 2020 lúc 9:09

để mik lm phần b phần c d ai giúp mik nx

xét tam giác AKD và tam giác KIB

góc AKD =góc BKI ( đối đỉnh )

góc ADI=góc ABE ( phần a )

=> góc KAD= góc DIB

mà góc KAD=60 độ ( tam giác ADB đều)

----------------------------------------------------------

Bình luận (0)
 Khách vãng lai đã xóa
Bùng nổ Saiya
Xem chi tiết
Nguyễn Linh Chi
16 tháng 1 2020 lúc 11:04

Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
Vũ Tiến Duy
Xem chi tiết
le thi khuyen
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 6 2017 lúc 3:20

Bình luận (1)
Quỳnh Chi
Xem chi tiết
TuLen Tân Thần Thuên Hà
Xem chi tiết
Phạm Thùy Dung
Xem chi tiết
Nguyễn Linh Chi
16 tháng 1 2020 lúc 11:02

A D E B C I M N K F

a) +) Chứng minh \(\Delta\)DAC = \(\Delta\)BAE 

Thật vậy: Ta có: AD = AB ( \(\Delta\)DAB đều ) 

                         ^DAB = ^CAE ( = 60\(^o\); \(\Delta\)DAB đều ; \(\Delta\)CAE đều ) => ^DAC = ^BAE 

                           CA = AE ( \(\Delta\)CAE đều )

Từ 3 điều trên => \(\Delta\)DAC = \(\Delta\)BAE ( c.g.c) (1)

=>  ^ABE = ^ADC (2)

+) Xét \(\Delta\)KAD và \(\Delta\)KIB có: ^DKA = ^BKI ( đối đỉnh )

                                                  ^KDA = ^KBI( theo  ( 2)  )

                    mà ^DKA + ^KDA + ^KAD= ^BKI + ^KBI + ^KIB = 180\(^o\)

=>  ^KIB = ^KAD = ^BAD=  60\(^o\)

=> ^DIB = 60\(^o\)

b) Từ (1) => DC = BE mà M là trung điểm DC; N là trung điểm BE 

=> DM  = BN (3) 

+) Xét \(\Delta\)BAN và \(\Delta\)DAM 

có: BN = DM ( theo (3)

     ^ABN = ^ADM ( theo (2)

     AB = AD ( \(\Delta\)ADB đều )

=> \(\Delta\)BAN = \(\Delta\)DAM  (4) 

=> AN = AM  => \(\Delta\)AMN cân tại A  (5)

+) Từ (4) => ^BAN = ^DAM => ^BAM + ^MAN = ^DAB + ^BAM  

=> ^MAN = ^DAB = 60\(^o\)(6)

Từ (5); (6) => \(\Delta\)AMN đều 

c) +) Trên tia đối tia MI lấy điểm F sao cho FI = IB => \(\Delta\)FIB cân tại I 

mà ^BIF = ^BID = 60\(^{\text{​​}o}\)( theo (a))

=> \(\Delta\)FIB đều  (7)

=> ^DBA = ^FBI( =60\(^o\))

=> ^DBF + ^FBA = ^FBA + ^ABI 

=> ^DBF = ^ABI  

Lại có: BI = BF ( theo (7) ) và BA = BD ( \(\Delta\)BAD đều )

Từ (3) điều trên => \(\Delta\)DFB = \(\Delta\)AIB  => ^AIB = ^DFB = 180\(\text{​​}^o\)- ^BFI = 180\(\text{​​}^o\)-60\(\text{​​}^o\)=120\(\text{​​}^o\)

+) Mặt khác ^BID = 60 \(\text{​​}^o\)( theo (a) ) 

=> ^DIE = 180\(\text{​​}^o\)- ^BID = 120 \(\text{​​}^o\)và ^DIA = ^AIB - ^BID = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^AIE = ^DIE - ^DIA = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^DIA = ^AIE ( = 60\(\text{​​}^o\)

=> IA là phân giác ^DIE.

                       

Bình luận (0)
 Khách vãng lai đã xóa
Trần Thị Thùy Dung
Xem chi tiết