Cho a,b là số thực dương và a+b=1. tìm GTNN của biểu thức
P= \(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\)
Cho a, b, c là ba số thực dương và abc = 1. Tìm GTNN của biểu thức: A = \(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}+\frac{1}{b^4\left(1+c\right)\left(1+a\right)}+\frac{1}{c^4\left(1+a\right)\left(1+b\right)}\)
\(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}=\frac{1}{\frac{a^4\left(1+b\right)\left(1+c\right)}{abc}}=\frac{\frac{1}{a^3}}{\left(\frac{1}{b}+1\right)\left(\frac{1}{c}+1\right)}\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\), tương tự suy ra:
\(A=\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
Theo BĐT AM-GM ta có: \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
Tương tự suy ra \(A+\frac{3}{4}+\frac{x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)
\(\Rightarrow A\ge\frac{x+y+z}{2}-\frac{3}{4}\ge\frac{3\sqrt[3]{xyz}}{2}-\frac{3}{4}=\frac{3}{4}\)
Dấu = xảy ra khi x=y=z=1 hay a=b=c=1
VỚi các số thực: a,b,c >0 thỏa a+b+c=1. Chứng minh rằng: \(\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\le2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
Help me
Cho a, b, c là các số thực dương thỏa mãn a + b = ab. Tìm GTNN của biểu thức :
\(P=\frac{1}{a^2+2a}+\frac{1}{b^2+2b}+\sqrt{\left(1+a^2\right)\left(1+b^2\right)}\)
p \(\ge\)\(\frac{4}{a^2+b^2+2\left(a+b\right)}\) +\(\sqrt{\left(1+ab\right)^2}\) (bunhia và cosi)
=\(\frac{4}{a^2+b^2+2ab}+1+ab=\frac{4}{\left(a+b\right)^2}+a+b+1\)
do \(a+b=ab\le\frac{\left(a+b\right)^2}{4}\Rightarrow a+b\ge4\)
dạt a+b = t thì t>=4
cần tìm min \(\frac{4}{t^2}+t+1=\frac{4}{t^2}+\frac{t}{16}+\frac{t}{16}+\frac{7t}{8}+1\)
\(\ge3.\sqrt[3]{\frac{4}{t^2}.\frac{t}{16}.\frac{t}{16}}+\frac{7.4}{8}+1=\frac{21}{4}\)
dau = xay ra khi a=b=2
Cho a,b là các số thực dương thỏa mãn a+b=1
Tìm GTNN của biểu thức \(A=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{a}\right)\)
lm cách nào để ra 1 chứ hau đoán lụi
Tao thề là bài này quen lắm Quỳnh ạ, tao làm rồi hay sao ấy, đợi tí lục lại đã .-.
Cho a,b,c là các số thực dương thỏa mãn \(b^2+c^2\le a^2\). Tìm GTNN của biểu thức: \(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Kurosaki Akatsu giải thế thì đề bài cho \(b^2+c^2\le a^2\) để làm gì?
Áp dụng bất đẳng thức AM-GM ta có :
\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(P=\frac{b^2}{a^2}+\frac{c^2}{a^2}+\frac{a^2}{b^2}+\frac{a^2}{c^2}\ge4.\sqrt[4]{\frac{b^2}{a^2}.\frac{c^2}{a^2}.\frac{a^2}{b^2}.\frac{a^2}{c^2}}=4.1=4\)
=> \(Min_P=4\)
Với a, b, c thực dương áp dụng BĐT Cô-si ta có:
\(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)=\left(\frac{b^2}{a^2}+\frac{c^2}{a^2}\right)+\left(\frac{a^2}{b^2}+\frac{a^2}{c^2}\right)\)
\(\ge2\sqrt{\frac{b^2}{a^2}.\frac{c^2}{a^2}}+2\sqrt{\frac{a^2}{b^2}.\frac{a^2}{c^2}}=2\left(\frac{bc}{a^2}+\frac{a^2}{bc}\right)\)
\(=2\left[\left(\frac{bc}{a^2}+\frac{a^2}{4bc}\right)+\frac{3a^2}{4bc}\right]\ge2\left(2.\sqrt{\frac{bc}{a^2}.\frac{a^2}{4bc}}+\frac{3\left(b^2+c^2\right)}{4bc}\right)\) (vì \(a^2\ge b^2+c^2\))
\(=2\left(2\sqrt{\frac{1}{4}}+\frac{3.2bc}{4bc}\right)\) (vì \(b^2+c^2\ge2bc\))
\(=2\left(2.\frac{1}{2}+\frac{3}{2}\right)=5\)
Vậy Pmin = 5
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}a^2=b^2+c^2\\b=c\end{cases}}\)
Cho số thực dương a,b,c thỏa mãn abc =1 . Tìm GTNN của biểu thức
P = \(\frac{\left(1+a\right)^2+b^2+5}{ab+a+4}+\frac{\left(1+b\right)^2+c^2+5}{bc+b+4}+\frac{\left(1+c\right)^2+a^2+5}{ac+c+4}\)
alibaba nguyễn giúp em với WTFシSnow
Cho 3 số thực dương a,b,c thỏa : \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\)
Tìm GTNN của biểu thức :
\(Q=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
để biểu thức cho đơn giản , ta đặt x=a+1,y=b+1,z=c+1(x,y,z>0)
thì giả thiết thành \(\frac{1}{x+1}+\frac{3}{y+3}\le\frac{z}{z+2}\) .Tìm min xyz
Áp dụng bất đẳng thức cauchy:\(\frac{z}{z+2}\ge\frac{1}{x+1}+\frac{3}{y+3}\ge2\sqrt{\frac{3}{\left(x+1\right)\left(y+3\right)}}\)(1)
từ giả thiết :\(\frac{1}{x+1}\le\frac{z}{z+2}-\frac{3}{y+3}\Leftrightarrow1-\frac{1}{x+1}\ge1-\frac{z}{z+2}+\frac{3}{y+3}\)
\(\Leftrightarrow\frac{x}{x+1}\ge\frac{2}{z+2}+\frac{3}{y+3}\)
Áp dụng bất đẳng thức cauchy 1 lần nữa: \(\frac{x}{x+1}\ge\frac{2}{z+2}+\frac{3}{y+3}\ge2\sqrt{\frac{6}{\left(z+2\right)\left(y+3\right)}}\)(2)
tương tự ta cũng có: \(\frac{y}{y+3}\ge2\sqrt{\frac{2}{\left(z+2\right)\left(x+1\right)}}\)(3),
cả 2 vế các bất đẳng thức (1),(2)và (3) đều dương, nhân vế với vế:
\(\frac{xyz}{\left(x+1\right)\left(y+3\right)\left(z+2\right)}\ge\frac{8.6}{\left(x+1\right)\left(z+2\right)\left(y+3\right)}\)
\(\Leftrightarrow xyz\ge48\)
Dấu = xảy ra khi x=2,y=6,z=4 hay a=1,b=5,z=3
Cho a,b là các số thực dương thỏa mãn a + b = 19
Tìm GTNN của biểu thức \(P=\left(a+\frac{1}{b}+1\right)^2+\left(b+\frac{1}{a}+1\right)^2\)
hmu hmu đăng lần high :( các cu thảo giúp em
Áp dụng BĐT Côsi ta có:
\(P=\left(a+\frac{1}{b}+1\right)^2+\left(b+\frac{1}{a}+1\right)^2\ge\frac{\left(a+\frac{1}{b}+1+b+\frac{1}{a}+1\right)^2}{2}\) (BĐT quen thuộc)
\(=\frac{1}{2}\left[\left(\frac{1}{a}+\frac{4}{361}a\right)+\left(\frac{1}{b}+\frac{4}{361}b\right)+\frac{357}{361}\left(a+b\right)+2\right]^2\)
\(\ge\frac{1}{2}\left(\frac{4}{19}+\frac{4}{19}+\frac{357}{361}\cdot19+2\right)^2=\left(\frac{403}{38}\right)^2\)
Dấu "='' xảy ra khi: \(a=b=\frac{19}{2}\)
Sai thì bỏ qua:))
\(\left(a+\frac{1}{b}+1\right)^2+\left(b+\frac{1}{a}+1\right)^2\ge\frac{\left[\left(a+\frac{1}{b}+1\right)+\left(b+\frac{1}{a}+1\right)\right]^2}{2}\)\(=\frac{\left(a+b+\frac{1}{a}+\frac{1}{b}+2\right)^2}{2}\)
\(\ge\frac{\left(a+b+\frac{4}{a+b}+2\right)^2}{2}=\frac{\left(19+\frac{4}{19}+2\right)^2}{2}=...\)
Dấu đẳng thức xảy ra khi \(a=b=\frac{19}{2}\)
\(P=\left(x+\frac{1}{y}+1\right)^2+\left(y+\frac{1}{x}+1\right)^2\)
\(2P=\left[\left(x+\frac{1}{y}+1\right)^2+\left(y+\frac{1}{x}+1\right)^2\right]\left(1^2+1^2\right)\ge\left(x+\frac{1}{y}+y+\frac{1}{x}+2\right)^2\)
\(=\left(21+\frac{1}{x}+\frac{1}{y}\right)^2\ge\left(21+\frac{4}{x+y}\right)^2=\left(\frac{403}{19}\right)^2\)
Suy ra \(P\ge\frac{1}{2}\left(\frac{403}{19}\right)^2\)
Dấu \(=\)xảy ra khi \(x=y=\frac{19}{2}\).
Vậy ...
cho a,b,c là số thực dương, a+b+c=1. tìm GTNN của biểu thức
\(\frac{\left(1-c\right)^2}{\sqrt{2\left(b+c\right)^2+bc}}+\frac{\left(1-b\right)^2}{\sqrt{2\left(b+a\right)^2+ba}}+\frac{\left(1-a\right)^2}{\sqrt{2\left(a+c\right)^2+ac}}\)
Áp dụng bđt Cauchy-Schwarz ta có
\(VT\ge\frac{\left[3-\left(a+b+c\right)\right]^2}{\sum\sqrt{2\left(b+c\right)^2+bc}}=\frac{4}{\sum\sqrt{2\left(b+c\right)^2+bc}}\)\(\ge\frac{4}{\sum\sqrt{2\left(b+c\right)^2+\frac{\left(b+c\right)^2}{4}}}=\frac{4}{\sum\sqrt{\frac{9\left(b+c\right)^2}{4}}}\)\(=\frac{8}{6\left(a+b+c\right)}=\frac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Cho các số thực a,b,c thỏa 0<a,b,c<1 và ab+bc+ca=1. Tìm GTNN của biểu thức:
\(A=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)