Cho a=2.3.4.5.........25
Chứng tỏ rằng 25 số tự nhiên liên tiếp a+2;a+3;a+4;...;a+25 đều là hợp số
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 2, cho 3
b) Chứng tỏ rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
https://olm.vn/hoi-dap/question/118678.htm Ok nha Giờ bn giúp mk làm bài toán hình học lớ 6 đc k
a, chứng tỏ rằng tổng của 2 số tự nhiên liên tiếp thì không chia hết cho 2
b, chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp thì không chia hết cho 3
cu 2 so tu nhien lien tiep thi co 1 so chan 1 so le
suy ra: le + chan= le
ma so le ko chia het cho 2
suy ra tong hai so tu nhien lien tiep khong chia het cho 2
Bài 2:
a) Chứng tỏ rằng 2 số tự nhiên liên tiếp có 1 số chia hết cho 2
b) Chứng tỏ rằng 2 số tự nhiên liên tiếp có 1 số chia hết cho 3
c) Chứng tỏ rằng 3 số tự nhiên liên tiếp có 1 số chia hết cho 4
Giúp em vs em đang cần gấp
1.Tìm n \(\in\) N, biết:
a) 3n-1 chia hết cho 3-2n
b) 3n+1 chia hết cho 11-2n
2. a) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 2
b) Chứng tỏ rằng tích 3 số tự nhiên liên tiếp chia hết cho 6
c) Chứng tỏ rằng tích 2 số tự nhiên liên tiếp chia hết cho 8
a/ Chứng tỏ rằng tổng 3 số tự nhiên liên tiếp chia hết cho 3
b/ Chứng tỏ rằng tổng 4 số tự nhiên liên tiếp không chia hết cho 4
a) trung bình cộng của 3 số đó là a
tổng là b
ta có : 3a = b
suy ra b chia hết cho 3
a / Trong 3 số tự nhiên liên tiếp có 1 số CHC 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 .
Ta lấy hai số dư cộng lại => = 3 .
Nên 3 số tự nhiên liên tiếp bao giờ cũng chia hết cho 3 .
b/ Trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4, 1 số chia 4 dư 1 , 1 số chia 4 dư 2 , 1 số chia 4 dư 3 .
Ta lấy 3 số dư cộng lại = 6 mả :
6 ko chia hết cho 4 nên :
4 số tự nhiên liên tiếp ko bao giờ chia hết cho 4 .
a) Chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
b) Chứng tỏ rằng tích của 3 số tự nhiên liên tiếp chia hết cho 6
a/ Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3.
b/
Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6 (đpcm)
a.
b.
từ ý a ta thấy tích của 3 số tự nhiên liên tiếp sẽ chia hết cho 3
mà trong 3 số tự nhiên liên tiếp chắc chắn có ít nhất 1 số chẵn do đó tích 3 số tự nhiên liên tiếp luôn chia hết cho 2
vậy tích 3 số tự nhiên liên tiếp chia hết cho 2 x 3 = 6
a) Câu hỏi của Hoàng Như Anh - Toán lớp 7 - Học toán với OnlineMath
b) chứng tỏ tích của 3 số tự nhiên liên tiếp chia hết cho 6? | Yahoo Hỏi & Đáp
a/ Chứng tỏ rằng số111222 là tích của 2 số tự nhiên liên tiếp .
b/ Chứng tỏ số 444222 là tích của hai số tự nhiên liên tiếp .
c/ Chứng tỏ rằng số 11...122...2 là tính của hai số tự nhiên liên tiếp .
( Ai giúp được 3 câu thì tích đúng 3 lần )
a.
ọi số thứ nhất là x, số thứ 2 là x + 1
Có x . (x +1) = 111222
<=> x² + x = 111222
Cộng cả 2 vế với 1/4, ta có
x² + x + 1/4 = 111222,25
<=> x² + 2 . 1/2.x + (1/2)² = 111222,25 (xuất hiện hằng đẳng thức)
<=> (x + 1/2)² = 111222,25
<=> x + 1/2 = 333,5
<=> x = 333
Vậy số thứ nhất là 333, số thứ 2 là 334. Tích 2 số này bằng 111222
Còn lại mỏi tay quá
Bạn xem lời giải của bạn Đức Nhật Huỳnh ở đường link dưới nhé:
Câu hỏi của Nguyễn Thị Thảo Ly - Toán lớp 6 - Học toán với OnlineMath
11...122...2 ( n số 1; n số 2)
=111....1(n chữ số 1) 00...00(n chữ số 0) + 22...2(n chữ số 2)
=111...1(n chữ số 1) . 100...0(n chữ số 0) +111...1(n chữ số 1) . 2
=11....1(n chữ số 1) (1000....0(n chữ số 0) + 2)
=111....1(n chữ số 1) . 100...02(n-1 chữ số 0)
=11...1 . 3 ( n chữ số 1) . 33...34(n-1 chữ số 3)
=333...3( n chữ số 3) . 33...34(n-1 chữ số 3)
Vậy ..........
a)tổng của 3 số tự nhiên liên tiếp có chia hết cho 3 không
b)tổng của 4 số tự nhiên liên tiếp có chia hết cho 4 không
c)chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
d)chứng tỏ rằng trong 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
a) Chứng tỏ rằng trong ba số tự nhiên liên tiếp có một số chia hết cho 3
b) Chứng tỏ rằng trong bốn số tự nhiên liên tiếp có một số chia hết cho 4
a) Chứng minh ba số tự nhiên liên tiếp chia hết cho 3
Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2\)
Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right)\)
+ Với \(n:3\)dư \(1\)\(\Rightarrow\)\(n=3k+1\)\(\left(k>0\right)\)
Thay \(n=3k+1\)vào \(n+2\)ta có: \(n+2=3k+1+2=3k+3⋮3\)
+ Với \(n:3\)dư \(2\)\(\Rightarrow\)\(n=3k+2\)\(\left(k>0\right)\)
Thay \(n=3k+1\)vào \(n+1\)ta có: \(n+1=3k+1+2=3k+3⋮3\)
Vậy ba số tự nhiên liên tiếp luôn chia hết cho 3
b) Chứng minh bốn số tự nhiên liên tiếp chia hết cho 4
Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2;\)\(n+3\)
Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right).\left(n+4\right)\)
+ Với \(n:4\)dư \(1\)\(\Rightarrow\)\(n=4k+1\)\(\left(k>0\right)\)
Thay \(n=4k+1\)vào \(n+3\)ta có: \(n+3=4k+1+3=4k+4⋮4\)
+ Với \(n:4\)dư \(2\)\(\Rightarrow\)\(n=4k+2\)\(\left(k>0\right)\)
Thay \(n=4k+2\)vào \(n+2\)ta có: \(n+2=4k+2+2=4k+4⋮4\)
+ Với \(n:4\)dư \(3\)\(\Rightarrow\)\(n=4k+3\)\(\left(k>0\right)\)
Thay \(n=4k+3\)vào \(n+1\)ta có: \(n+1=4k+1+3=4k+4⋮4\)
Vậy bốn số tự nhiên liên tiếp luôn chia hết cho 4
\(a)\) Gọi ba số tự nhiên liên tiếp là \(a,a+1,a+2\)
Nếu \(a⋮3\) thì bài toán được chứng minh
Nếu \(a⋮3̸\) thì \(a=3k+1\) hoặc \(a=3k+2\left(k\in N\right)\)
Nếu \(a=3k+1\) thì \(a+2=3k+1+2=3k+3⋮3\)
(vì \(3k⋮3\)và \(3⋮3\) nên\(3k+3⋮3\))
Nếu \(a=3k+2\) thì \(a+1=3k+2+1=3k+3⋮3\)
(vì \(3k⋮3\) và \(3⋮3\) nên \(3k+3⋮3\))
Vậy trong ba số tự nhiên liên tiếp, có \(1\) số chia hết cho \(3\)
\(b)\)Đặt \(4\) số tự nhiên liên tiếp là: \(n,n+1,n+2,n+3\)
Nếu \(n⋮4\) thì bài toán đc chứng minh
Nếu \(n⋮4\) dư \(1\) \(\Rightarrow\) \(4k+1\) \(\Rightarrow\) \(n=3=4k+1+3=4k+4⋮4\)
Nếu \(n⋮4\) dư \(2\) \(\Rightarrow\) \(4k+2\)\(\Rightarrow\) \(n=2=4k+2+2=4k+4⋮4\)
Nếu \(n⋮4\) dư \(3\) \(\Rightarrow\) \(4k+3\)\(\Rightarrow\) \(n=1=4k+3+1=4k+4⋮4\)
Vậy trong 4 số tự nhiên liên tiếp có \(1\) số chia hết cho \(4\)