Những câu hỏi liên quan
Nguyễn Gia Huy
Xem chi tiết
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 7 2021 lúc 22:30

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)

\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)

\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)

\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)

\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)

\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)

Trần Anh Tuấn
Xem chi tiết
thục khuê nguyễn
Xem chi tiết
Hồ Ann
Xem chi tiết
Hồ Ann
23 tháng 3 2023 lúc 20:42

Mình cần lời giải chi tiết ạ.

Chanh
Xem chi tiết
Nguyễn Ngọc Lộc
9 tháng 2 2021 lúc 15:56

Ta có : \(P=a^2+b^2+c^2\)

\(\Rightarrow P+2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Rightarrow P+2=\left(a+b+c\right)^2\ge0\)

\(\Rightarrow P\ge-2\)

Vậy MinP = -2 tại a + b + c = 0 .

Hồng Phúc
9 tháng 2 2021 lúc 22:49

Dễ thấy:

\(2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow P\ge ab+bc+ca=1\)

\(minP=1\Leftrightarrow a=b=c=\dfrac{\sqrt{3}}{3}\)

Hồng Phúc
9 tháng 2 2021 lúc 22:51

Cách khác:

Áp dụng BĐT BSC:

\(ab+bc+ca=1\)

\(\Rightarrow1=\left(ab+bc+ca\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)=\left(a^2+b^2+c^2\right)^2=P^2\)

\(\Rightarrow P\ge1\left(\text{Do }P>0\right)\)

\(minP=1\Leftrightarrow a=b=c=\dfrac{\sqrt{3}}{3}\)

ʚĭɞ Thị Quyên ʚĭɞ
Xem chi tiết
Hoàng Lê Bảo Ngọc
9 tháng 9 2016 lúc 19:04

Ta có : \(a^2+ab+b^2=\left(a+b\right)^2-ab\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3\left(a+b\right)^2}{4}\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}\left(a+b\right)}{2}\)

Tương tự : \(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}\left(b+c\right)}{2}\) ; \(\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}\left(c+a\right)}{2}\)

Suy ra : \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}}{2}.2.\left(a+b+c\right)=\sqrt{3}\)

Vậy MIN B = \(\sqrt{3}\) \(\Leftrightarrow\begin{cases}a+b+c=1\\a=b=c\end{cases}\)

\(\Leftrightarrow a=b=c=\frac{1}{3}\)

Mai Tiến Đỗ
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2021 lúc 11:18

\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)

\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)

\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)

\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)

\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

oOo FC Tốc Độ oOo
Xem chi tiết