\(\frac{28}{x\left(x+2\right)}\)-\(\frac{28}{x}\)= 0,7
\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(2-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{1}{20}\)
\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(2-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{1}{20}\)
ghi sai để nên mik ko giải dc
\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(2-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{1}{20}\)
Tìm x: \(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}+\frac{1}{x-28}=\frac{-1}{20}\)
tìm x biết:
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}\)\(+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
B)\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{5}{2}\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
B) \(\frac{\left(x-4\right)-\left(x-7\right)}{\left(x-7\right)\left(x-4\right)}+\frac{\left(x-7\right)-\left(x-13\right)}{\left(x-13\right)\left(x-7\right)}+\frac{\left(x-13\right)-\left(x-28\right)}{\left(x-28\right)\left(x-13\right)}\)
\(=\frac{1}{x-7}-\frac{1}{x-4}+\frac{1}{x-13}-\frac{1}{x-7}+\frac{1}{x-28}-\frac{1}{x-13}\)
\(=\frac{1}{x-28}-\frac{1}{x-4}=-\frac{5}{2}+\frac{1}{x-28}\)
\(\Leftrightarrow\frac{1}{x-28}-\frac{1}{x-4}-\frac{1}{x-28}=-\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{x-4}=\frac{5}{2}\)
=> 5x - 20 = 2
=> 5x = 22
\(\Rightarrow x=\frac{22}{5}=4,4\)
Vậy, x = 4,4
Tìm x, biết :
\(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}\)
\(+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=\frac{-1}{20}\)
giúp mình với các bạn !!!!!!!!!!!!
Mình cần gấp bài này !!!
1/Tìm x, biết :
a/ \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}+\frac{x}{\left(x+3\right)\left(x+34\right)}\)
b/ \(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=\frac{-1}{20}\)
tìm x biết:
\(\frac{x-28-124}{2011}+\frac{x-24-2011}{28}+\frac{x-2011-28}{124}=3\)
\(\left(4x-1\right)^2=\left(1-4x\right)^4\)
b) (4x -1)2 = (1-4x)4 (1)
Vì (1 - 4x) = (4x - 1)
\(\Rightarrow\)(1 - 4x)4 = [ -( 4x -1)4 ]
Vì (1-4x)4 = ( 4x - 1)4
Do đó (1) có dạng :
(4x - 1)2 = (4x - 1)2
Đặt 4x - 1 = x, ta có :
x2 = x4
x2 ( 1 - x2 ) = 0
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\x^2=\orbr{\begin{cases}1^2\\\left(-1\right)^2\end{cases}}\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\orbr{\begin{cases}x=1\\x=-1\end{cases}}\end{cases}}\)
Thay x = 4x -1 = 0
x = \(\frac{1}{4}\)
x = 1 \(\Leftrightarrow\) 4x - 1 = 1x = \(\frac{1}{2}\)
x = -1 \(\Leftrightarrow\) 4x -1 = -1x = 0
Vậy x = \(\frac{1}{2}\) hoặc x = 0
Tính(rút gọn)
a,\(\left(x-\frac{3}{x+2}\right)\left(x+\frac{2}{x+3}\right)\)
b,\(\left(x-\frac{28}{x-3}\right)\left(x-\frac{21}{x+4}\right)\)