tìm x
/ \(\frac{1}{3}+2019.x\) / + /\(\frac{2}{3}+2020.x\) / = 4040.x
Tìm x biết \(\frac{x-1}{2017}+\frac{x-2}{2018}-\frac{x-3}{2019}=\frac{x-4}{2020}\)
Ta có : \(\frac{x-1}{2017}+\frac{x-2}{2018}-\frac{x-3}{2019}=\frac{x-4}{2020}\)
\(\Rightarrow\frac{x-1}{2017}+\frac{x-2}{2018}=\frac{x-4}{2020}+\frac{x-3}{2019}\)
\(\Rightarrow1+\frac{x-1}{2017}+1+\frac{x-2}{2018}=1+\frac{x-4}{2020}+1+\frac{x-3}{2019}\)
\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}=\frac{2016+x}{2020}+\frac{2016+x}{2019}\)
\(\Rightarrow\frac{2016+x}{2017}+\frac{2016+x}{2018}-\frac{2016+x}{2019}-\frac{2016+x}{2020}=0\)
\(\Rightarrow\left(2016+x\right)\left(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\right)=0\)
\(\text{Mà :
}\)\(\frac{1}{2017}+\frac{1}{2018}-\frac{1}{2019}-\frac{1}{2020}\ne0\)
\(\text{Nên : }\) \(2016+x=0\)
\(\Rightarrow x=-2016\)
Ta có : x−12017 +x−22018 −x−32019 =x−42020
⇒x−12017 +x−22018 =x−42020 +x−32019
⇒1+x−12017 +1+x−22018 =1+x−42020 +1+x−32019
⇒2016+x2017 +2016+x2018 =2016+x2020 +2016+x2019
⇒2016+x2017 +2016+x2018 −2016+x2019 −2016+x2020 =0
⇒(2016+x)(12017 +12018 −12019 −12020 )=0
Mà : 12017 +12018 −12019 −12020 ≠0
Nên : 2016+x=0
⇒x=−2016
tìm x
\(\frac{x+1}{2019}+\frac{x+2}{2020}=\frac{x+3}{2021}+\frac{x+4}{2022}\)
ko ghi lại đề
ta thấy : 2019 - 1 = 2018
2020 - 2 = 2018
2021 - 3 = 2018
2022 - 4 = 2018
=> x = 2018
thử lại :
2018+1/2019 + 2018+2/2020 = 2018+3/2021 + 2018+4/2022
= 1 + 1 = 1 + 1
2 = 2
2020 - 2 = 2018
2021 - 3 = 2018
2022 - 4 = 2018
=> x = 2018
thây zô mà thử lại
Tìm x biết
\(\frac{x+4}{2019}+\frac{x+3}{2020}=\frac{x+2}{2021}+\frac{x+1}{2022}\)
\(\frac{x+4}{2019}+\frac{x+3}{2020}=\frac{x+2}{2021}+\frac{x+1}{2020}\)
\(\Leftrightarrow(\frac{x+4}{2019}+1)+(\frac{x+3}{2020}+1)=(\frac{x+2}{2021}+1)+(\frac{x+1}{2022}+1)\)
\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}=\frac{x+2023}{2021}+\frac{x+2023}{2022}\)
\(\Leftrightarrow\frac{x+2023}{2019}+\frac{x+2023}{2020}-\frac{x+2023}{2021}-\frac{x+2023}{2022}=0\)
\(\Leftrightarrow\left(x+2023\right)\left(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2020}\right)=0\)
\(\Leftrightarrow x+2023=0\)
\(\Leftrightarrow x=-2023\)
Nhầm đề :( Với bước thứ 4 sửa thành ( 1/2019 + 1/2020 - 1/2021 - 1/2022 )
\(\frac{x+4}{2019}+\frac{x+3}{2020}=\frac{x+2}{2021}+\frac{x+1}{2022}\)
\(\Leftrightarrow\)\(\frac{x+4}{2019}+\frac{x+3}{2020}+2=\frac{x+2}{2021}+\frac{x+1}{2022}+2\)
\(\Leftrightarrow\)\(\left(\frac{x+4}{2019}+1\right)+\left(\frac{x+3}{2020}+1\right)=\left(\frac{x+2}{2021}+1\right)+\left(\frac{x+1}{2022}+1\right)\)
\(\Leftrightarrow\)\(\left(\frac{x+4}{2019}+\frac{2019}{2019}\right)+\left(\frac{x+3}{2020}+\frac{2020}{2020}\right)\)\(=\)\(\left(\frac{x+2}{2021}+\frac{2021}{2021}\right)+\left(\frac{x+1}{2022}+\frac{2022}{2022}\right)\)
\(\Leftrightarrow\)\(\frac{x+2023}{2019}+\frac{x+2023}{2020}=\frac{x+2023}{2021}+\frac{2023}{2022}\)
\(\Leftrightarrow\)\(\frac{x+2023}{2019}+\frac{x+2023}{2020}-\frac{x+2023}{2021}-\frac{x+2023}{2022}=0\)
\(\Leftrightarrow\) \(\left(x+2023\right).\left(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2022}\right)=0\)
\(\Leftrightarrow\)\(x+2023=0\) ( Vì \(\frac{1}{2019}+\frac{1}{2020}-\frac{1}{2021}-\frac{1}{2022}\ne0\))
\(\Leftrightarrow\)\(x=-2023\)
Vậy x = -2023
Tìm x biết \(\frac{\left(2019-x\right)^2+\left(2019-x\right)\left(x-2020\right)}{\left(2019-x\right)^2-\left(2019-x\right)\left(x-2020\right)}\)\(\frac{+\left(x-2020\right)^2}{+\left(x-2020\right)^2}\)\(=\frac{19}{49}\)
CMR
\(\frac{1}{4040}< \left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{2017}{2018}.\frac{2019}{2020}\right)^2< \frac{1}{2021}\)
\(\frac{x+4}{2017}+\frac{x+3}{2018}+\frac{x+2}{2019}+\frac{x+1}{2020}\)
TÌM X BIẾT:
\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)
HELP ME!!
Ai nhanh và đúng mik tick.
\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)
\(\Leftrightarrow\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}=\frac{x+2017}{2019}+\frac{x+2017}{2018}\)
\(\Leftrightarrow\frac{x+2017}{2021}+\frac{x+2017}{2020}-\frac{x+2017}{2019}-\frac{x+2017}{2018}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)
Mà \(\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)\ne0\)
\(\Leftrightarrow x+2017=0\)
\(\Leftrightarrow x=-2017\)
Vậy ..
=> (x-4/2021 +1) + (x-3/2020 +1) = (x-2/2019 +1)+ (x-1/2018 +1)
=> x+2017/2021 + x+2017/2020 = x+2017/2019 + x+2017/2018
=> x+2017/2018 + x+2017/2018 - x+2017/2020 - x+2017/2021 = 0
=> (x+2017).(1/2018+1/2019+1/2020+1/2021) = 0
=> x+2017 = 0 ( vì 1/2018+1/2019+1/2020+1/2021 > 0 )
=> x=-2017
Vậy x=-2017
k mk nha
\(\frac{x-4}{2021}+\frac{x-3}{2020}=\frac{x-2}{2019}+\frac{x-1}{2018}\)
\(\left(\frac{x-4}{2021}+1\right)+\left(\frac{x-3}{2020}+1\right)=\left(\frac{x-2}{2019}+1\right)+\left(\frac{x-1}{2018}+1\right)\)
\(\frac{x-2017}{2021}+\frac{x-2017}{2020}=\frac{x-2017}{2019}+\frac{x-2017}{2018}\)
\(\frac{x-2017}{2021}+\frac{x-2017}{2020}-\frac{x-2017}{2019}-\frac{x-2017}{2018}=0\)
\(\left(x-2017\right).\left(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\right)=0\)
vì \(\frac{1}{2021}+\frac{1}{2020}-\frac{1}{2019}-\frac{1}{2018}\ne0\)nên x - 2017 = 0 \(\Rightarrow\)x = 2017
tìm x biết
\(\frac{\left(2019-x^2\right)+\left(2019-x\right)\left(x-2020\right)+\left(x-2020\right)^2}{\left(2019-x\right)^2-\left(2019-x\right)\left(x-2020\right)+\left(x-2020^2\right)}\) = \(\frac{19}{49}\)
Tìm x , biết
x - 2019 + \(\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)
\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)
\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)
\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)
\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)
\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\Rightarrow-\frac{1}{12}\left(x-2018\right)=0\Leftrightarrow x=2018\)
Bài làm :
Ta có :
\(x-2019+\frac{x-2020}{2}=\frac{x-2021}{3}+\frac{x-2022}{4}\)
\(\Rightarrow x-2019+1+\frac{x-2020}{2}+1=\frac{x-2021}{3}+1+\frac{x-2022}{4}+1\)
\(\Rightarrow x-2018+\frac{x-2020+2}{2}=\frac{x-2021+3}{3}+\frac{x-2022+4}{4}\)
\(\Rightarrow x-2018+\frac{x-2018}{2}-\frac{x-2018}{3}-\frac{x-2018}{4}=0\)
\(\Rightarrow\left(x-2018\right)\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\text{Vì : }\left(1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\ne0\Rightarrow x-2018=0\)
\(\Rightarrow x=2018\)
Vậy x=2018