690x-7y=3429
x^2+23=y^3
*Tim snt xy thoa man
HELP ME PLS !!! ai nhanh mk tick cho
giá trị cua x thoa man 2^2x * 3^2x=36^24
helf me
ai nhanh mk cho 1 tick
2^2x*3^2x=36^24
=>(2*3)^2x=36^24
=>6^2x=36^24
=>36^x=36^24
=>x=24 ok nha
Tim cac cap x;y thoa man:
a) (x-3).(2.y+1)=5
b) xy+3x-7y=21
c) xy+3x-2y=11
mình mới học lớp 5 thôi !
Thông cảm cho mình nhé Do uyen Linh !
cho cac so thuc x,y thoa man x^2+y^2-xy-9 tim GTNN cua P= x^2+y^2
help meeeeeeee
cho cac so thuc x,y thoa man x^2+y^2-xy-9 tim GTNN cua P= x^2+y^2
help meeeeeeeeeeee
tim cap (x;y) thoa man
3/4x/+/y+3/=21
help me!
tìm n để :
25n+3 thoa man 53
3n +1 thoa man 11 - 2n
ai làm đúng mk tick 1 tick , nhanh lên nha !
\(\left(n+6\right)⋮\left(n+2\right)\)
\(\Rightarrow\left(n+2+4\right)⋮\left(n+2\right)\)
\(\Rightarrow4⋮n+2\)
\(\Rightarrow n+2\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow n\in\left\{-6;-4;-3;-1;0;2\right\}\)
\(\left(25n+3\right)⋮53\)
\(\Rightarrow\left(25n+3-53\right)⋮53\)
\(\Rightarrow\left(25n-50\right)⋮53\)
\(\Rightarrow25\left(n-2\right)⋮53\)
\(\text{Mà 25 không chia hết cho 53 nên }n-2⋮53\)
\(\Rightarrow n=53k+2\)
a)Tim cap (x,y) nguyen duong thoa man xy=3(y-x)
b)cho 2 so x,y >0 thoa man x+y = 1
Tim GTNN cua M=(x^2+1/y^2)(y^2+1/x^2)
mình biết làm nhưng dài quá bạn tra trên google là đc
Giúp mk với!!!!!!!! Help me! @_@
Chứng minh rằng : x^5 + y^5 ≥ x^4y + xy^4 với x, y ≠ 0 và x + y ≥ 0
Giải giùm mk xog thì kết bạn nha ai nhanh mk sẽ tick cho!^^
Đề thế này phải ko bạn:
Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)và\(x+y\ge0\)
bạn vào fx viết lại đề đi nha, sai đề rùi
Ta có: \(x^5+y^5\ge x^4.y+x.y^4\)(1)
<=>\(x^5+y^5-x^4.y-x.y^4\ge0\)
<=>\(\left(x^5-x^4.y\right)-\left(x.y^4-y^5\right)\ge0\)
<=>\(x^4.\left(x-y\right)-y^4.\left(x-y\right)\ge0\)
<=>\(\left(x^4-y^4\right).\left(x-y\right)\ge0\)
<=>\(\left[\left(x^2\right)^2-\left(y^2\right)^2\right].\left(x-y\right)\ge0\)
<=>\(\left(x^2+y^2\right).\left(x^2-y^2\right).\left(x-y\right)\ge0\)
<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right).\left(x-y\right)\ge0\)
<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right)^2\ge0\)
Vì \(x^2+y^2\ge0,\left(x-y\right)^2\ge0\)
=>(1)<=>\(x+y\ge0\)(2)
Vì \(x+y\ge0\)(theo giả thiết)
=>(2) đúng với mọi x,y
Vì các dấu"<=>" có giá trị như nhau
=>(1) đúng với mọi x,y
=>ĐPCM
Tim x,y thoa man
x^2+y^2=3-xy