Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Hồng Hạnh
Xem chi tiết
Không Văn Tên
Xem chi tiết
Lê Minh Quân
Xem chi tiết
Lionel Messi
Xem chi tiết
Chung Ngô Yến Thị ẘ
Xem chi tiết
Dương Lam Hàng
27 tháng 12 2018 lúc 12:05

Ta có: \(\sqrt{x+2\sqrt{3}}=\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\left(\sqrt{x+2\sqrt{3}}\right)^2=\left(\sqrt{y}+\sqrt{z}\right)^2\)

\(\Leftrightarrow y+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Leftrightarrow x-y-z+2\sqrt{3}=2\sqrt{yz}\)

\(\Leftrightarrow\left[\left(x-y-z\right)+2\sqrt{3}\right]^2=\left(2\sqrt{yz}\right)^2\)

\(\Leftrightarrow\left(x-y-z\right)^2+4\sqrt{3}.\left(x-y-z\right)+12=4yz\) (1)

- Nếu x - y - z = 0 thì (1) trở thành: \(\hept{\begin{cases}x-y-z=0\\4yz=12\end{cases}\Leftrightarrow\hept{\begin{cases}x-y-z=0\\yz=3\end{cases}}}\)

  ta thấy x;y;z thuộc N nên yz=3=1.3=3.1

                               y=1;z=3 hoặc y=3; z=1 thì x vẫn bằng 4

\(\Rightarrow\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)

               (THỎA MÃN)

- Nếu x - y - z khác 0 

Ta có: \(\frac{4yz-\left(x-y-z\right)^2-12}{4\left(x-y-z\right)}=\sqrt{3}\) 

(x;y;z là số tự nhiên nên vế trái là số hữu tỉ, mà ở đây vế phải là căn 3 => Vô lý)

Vậy \(\hept{\begin{cases}x=4\\y=1\\z=3\end{cases}}\) hoặc \(\hept{\begin{cases}x=4\\y=3\\z=1\end{cases}}\)

Chung Ngô Yến Thị ẘ
27 tháng 12 2018 lúc 12:05

cảm ơn bạn

Athena
Xem chi tiết
Đạt Phan Thành
Xem chi tiết
Ngô Linh
Xem chi tiết
Ngô Minh Anh
Xem chi tiết
Ngô Minh Anh
12 tháng 4 2015 lúc 21:36

Giải nhanh và chi tiết giúp mình nhé. 22/4 là mình thi HSG rồi