Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Cảnh
Xem chi tiết
Lê Song Phương
28 tháng 3 2022 lúc 6:27

1) Hình như đề bị sai rồi bạn.

Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)

Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)

Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)

pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)

Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:

\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)

2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)

pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)

\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)

\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)

Nhận thấy \(\Delta'=6^2-3.5=21>0\)

Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)

Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)

Khách vãng lai đã xóa
Vũ Phương Anh
Xem chi tiết
Pham Van Hung
17 tháng 2 2019 lúc 13:12

\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)

\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)

Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)

Dương An Hạ
Xem chi tiết
KAl(SO4)2·12H2O
21 tháng 9 2019 lúc 22:00

a) \(\frac{2x}{x+2}+\frac{x+2}{2x}=2\)

\(\Leftrightarrow4x^2+\left(x+2\right)^2=4x\left(x+2\right)\)

\(\Leftrightarrow5x^2+4x+4=4x^2+8x\)

\(\Leftrightarrow5x^2+4x+4-4x^2-8x=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Leftrightarrow x^2-2.x.2+2^2=0\)

\(\Leftrightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Rightarrow x=2\)

dsdasdas nguyan
Xem chi tiết
Jessie Rosé
Xem chi tiết
Huy Nguyễn Đức
24 tháng 3 2017 lúc 18:07

từ trên ta có (x+2)/13+(2x+45)/15-(3x+8)/37-(4x+69)/9=0

(x+2)/13+1+(2x+45)/15-1-(3x+8)/37-1-(4x+69)/9+1=0

(x+15)/13+(2x+30)/15-((3x+8)/37+1)-((4x+69)/9-1)=0

(x+15)/13+2(x+15)/15-3(x+15)/37-4(x+15)/9=0

(x+15)(1/13+2/15-3/37-4/9)=0

suy ra x+15=0

x=-15

l҉o҉n҉g҉ d҉z҉
26 tháng 11 2020 lúc 19:54

\(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)

<=> \(\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)

<=> \(\frac{x+2+13}{13}+\frac{2x+45-15}{15}=\frac{3x+8+37}{37}+\frac{4x+69-9}{9}\)

<=> \(\frac{x+15}{13}+\frac{2\left(x+15\right)}{13}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)

<=> \(\frac{x+15}{13}+\frac{2\left(x+15\right)}{13}-\frac{3\left(x+15\right)}{37}-\frac{4\left(x+15\right)}{9}=0\)

<=> \(\left(x+15\right)\left(\frac{1}{13}+\frac{2}{13}-\frac{3}{37}-\frac{4}{9}\right)=0\)

Vì \(\frac{1}{13}+\frac{2}{13}-\frac{3}{37}-\frac{4}{9}\ne0\)

<=> x + 15 = 0

<=> x = -15

Khách vãng lai đã xóa
vuong hien duc
Xem chi tiết
Tớ Đông Đặc ATSM
15 tháng 7 2018 lúc 21:33

Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà

c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1

<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006

<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0

=> x-2010=0 => x=2010

d, TH1 : cả hai cùng âm

=>> 2X-4 <O => X< 2 

Và 9-3x<0 =>> x> 3 

=>> loại 

Th2 cả hai cùng dương

2x-4>O => x>2 

Và 9-3x>O => x<3 

=>> 2<x<3 (tm)

Trần Đặng Hiểu Khương
Xem chi tiết
shitbo
14 tháng 12 2018 lúc 19:20

\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left[\left(x+6\right)\left(x-1\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-6^2.P_{min}\Leftrightarrow x^2+5xđạtGTNN\)

\(x^2+5x\ge0\Leftrightarrow x\left(x+5\right)\ge0\)

Dấu "=" xảy ra <=> \(x\in\left\{0;-5\right\}\)

Vậy: Pmin=-36 <=> x E {0;-5}

shitbo
14 tháng 12 2018 lúc 19:23

CHờ tí mk lm câu b

Trần Đặng Hiểu Khương
14 tháng 12 2018 lúc 19:24

cảm ơn bạn nhiều

Phạm Lê Phương Thảo
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
25 tháng 9 2020 lúc 21:32

C với D mình làm sau vì nó phức tạp hơn ... E với F trước nhé

E = | 3x + 1 | + 2| x - y | + 1

\(\hept{\begin{cases}\left|3x+1\right|\ge0\\2\left|x-y\right|\ge0\end{cases}\forall}x,y\Rightarrow\left|3x+1\right|+2\left|x-y\right|+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x+1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=-\frac{1}{3}\)

=> MinE = 1 <=> x = y = -1/3

F = 5| x - 1 | + 1/2| 2x + y | + 2020

\(\hept{\begin{cases}5\left|x-1\right|\ge0\\\frac{1}{2}\left|2x+y\right|\ge0\end{cases}\forall}x,y\Rightarrow5\left|x-1\right|+\frac{1}{2}\left|2x+y\right|+2020\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\2x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

=> MinF = 2020 <=> x = 1 ; y = -2

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
25 tháng 9 2020 lúc 21:46

C = 2| x - 1 | + | 2x + 3 | - 2020

= | 2x - 2 | + | 2x + 3 | - 2020

= | 2x - 2 | + | -( 2x + 3 ) | - 2020

= | 2x - 2 | + | -2x - 3 | - 2020

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

C = | 2x - 2 | + | -2x - 3 | - 2020 ≥ | 2x - 2 - 2x - 3 | - 2020 = | -5 | - 2020 = 5 - 2020 = -2015

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 2 )( -2x - 3 ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-2\ge0\\-2x-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge2\\-2x\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\le-\frac{3}{2}\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-2\le0\\-2x-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le2\\-2x\le3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-\frac{3}{2}\end{cases}}\Leftrightarrow-\frac{3}{2}\le x\le1\)

=> MinC = -2015 <=> \(-\frac{3}{2}\le x\le1\)

D = | 3 - 2x | + 2| 1 - x | + 1/2

= | 3 - 2x | + | 2 - 2x | + 1/2

= | -( 3 - 2x ) | + | 2 - 2x | + 1/2

= | 2x - 3 | + | 2 - 2x | + 1/2

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

D = | 2x - 3 | + | 2 - 2x | + 1/2 ≥ | 2x - 3 + 2 - 2x | + 1/2 = | -1 | + 1/2 = 1 + 1/2 = 3/2

Dấu "=" xảy ra khi ab ≥ 0

=> ( 2x - 3 )( 2 - 2x ) ≥ 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge3\\-2x\ge-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-3\le0\\2-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le3\\-2x\le-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)

=> MinD = 3/2 <=> \(1\le x\le\frac{3}{2}\)

Khách vãng lai đã xóa
Phạm Lê Phương Thảo
26 tháng 9 2020 lúc 4:58

Cảm ơn bạn nhiều

Khách vãng lai đã xóa