Tính tổng \(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\)
Tính tổng S= 1+2+5+14+.......+\(\frac{3^{n-1}+1}{2}\)(n thuộc Z)
tính tổng \(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in Z\right)\)
Tính tổng :
S = 1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)(n\(\in\)Z+)
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)
\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)
\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)
\(S_1=1+1+1+...+n=n\)
\(S_2=3+9+...+3^n\)
\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)
\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)
Tính tổng : S = 1 + 2 + 5 + 14 + ........ + \(\frac{3^{n-1}+1}{2}\) ( với n thuộc Z )
áp dụng quy tắc
số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1
Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2
Tính tổng:
\(S=1+2+5+14+.....+\frac{3^{n-1}+1}{2}\)với n là số nguyên dương.
nhìn cái cuối là biết quy luật đó bạn :))
\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)
\(S=\frac{\left(3^0+3^1+....+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\left(\text{ có n c/s 1}\right)\)
\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}=3^n-1+\frac{n}{2}\)
chỗ 30+31+...+3n-1 bn tự tính :))
Tính tổng:
\(S=1+2+5+14+...+\frac{3^{x-1}+1}{2}\)
\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)
\(S=\frac{\left(3^0+3^1+3^2+...+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\)có n c/s 1
\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}\)
\(=3^n-1+\frac{n}{2}\)
...\(3^0+3^1+3^3+...+3^{n-1}\)bạn tính nha
Câu hỏi của WINNER - Toán lớp 7 - Học toán với OnlineMath
๖ۣۜƝƘ☆ŤŔầŃ➻❥VăŃ➻❥ŃÁM❖︵copy ở đây
\(S=1+2+5+14+...+\frac{3^{x-1}+1}{2}\)
\(\Rightarrow2S=2+4+10+28+...+\left(3^{x-1}+1\right)\)
\(\Rightarrow2S=\left[1+1+1+1+...+1\right]+\left[1+3+9+27+...+3^{x-1}\right]\)
Đặt : \(S1=1+1+1+1+...+1=x\)
\(S2=1+3+9+27+...+3^{x-1}\)
\(\Rightarrow3.S2=3+9+27+81+...+3^x\)
\(\Rightarrow3.S2=S2=2.S2=3^x-1\Leftrightarrow S2=\frac{3^x-1}{2}\)
\(\Rightarrow S=\frac{S1+S2}{2}=\frac{x+\frac{3^x-1}{2}}{2}\)
\(\Rightarrow S=\frac{3^x+2x-1}{4}\)
Vậy : \(S=\frac{3^x+2x-1}{4}\)
Tính tổng
S=1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)
với n thuộc số nguyên dương
Đặt P=31-1+32-1+33-1+34-1+...+3n-1
=>P=30+31+32+33+...+3n-1
=>3.P=31+32+33+34+...+3n
=>3.P-P=31+32+33+34+...+3n-30-31-32-33-...-3n-1
=>2.P=3n-30
=>2.P=3n-1
=>\(P=\frac{3^n-1}{2}\)
Lại có: S=1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)
=>\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+\frac{3^{4-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)
=>\(S=\frac{3^{1-1}+1+3^{2-1}+1+3^{3-1}+1+3^{4-1}+1+...+3^{n-1}+1}{2}\)
=>\(S=\frac{\left(3^{1-1}+3^{2-1}+3^{3-1}+3^{4-1}+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)
=>\(S=\frac{P+1.n}{2}\)
=>\(S=\frac{\frac{3^n-1}{2}+n}{2}\)
=>\(S=\frac{\frac{3^n-1}{2}+\frac{2n}{2}}{2}\)
=>\(S=\frac{\frac{3^n-1+2n}{2}}{2}\)
=>\(S=\frac{3^n-1+2n}{4}\)
Tính tổng
S = 1+2+5+14+........+3^ n-1+1 / 2
S = (3^0/2 + 1/2) + (3^1/2 + 1/2) + (3²/2 + 1/2) + (3³/2 + 1/2) +..+ 3^(n-1)/2 + 1/2
S = n.(1/2) + (1/2)[3^0 + 3^1 + 3² +...+ 3^(n-1)]
S = n/2 + (3^n - 1)/4 = (3^n + 2n - 1)/4
mình lớp 5 mong bạn thông cảm và
Tính tổng S=1+2+5+14+...+(3n-1 +1)/2