Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Huỳnh Thanh Long
Xem chi tiết
Trần Hữu Ngọc Minh
4 tháng 10 2017 lúc 22:22

Bạn tham khảo nhé:

Ta có \(xyz=1\Rightarrow x+y+z\ge3\)

Áp dụng BĐT sờ- swat,ta có:

\(Q\ge\frac{9}{2\left(x+y+z\right)+3}\le1\)(vì \(x+y+z\ge3\))

Vậy max=1

Trần Hữu Ngọc Minh
4 tháng 10 2017 lúc 22:25

Hình như bài này mình bị nghịch dấu rồi

Dương Thiên Tuệ
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết
Edogawa Conan
Xem chi tiết
Kiệt Nguyễn
31 tháng 12 2020 lúc 17:24

Ta có: \(x+y+z=xyz\Leftrightarrow x=\frac{x+y+z}{yz}\Leftrightarrow x^2=\frac{x^2+xy+xz}{yz}\Leftrightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\frac{1}{\sqrt{x^2+1}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)

Tương tự, ta được: \(\frac{1}{\sqrt{y^2+1}}=\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}\)\(\frac{1}{\sqrt{z^2+1}}=\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)

Cộng theo từng vế ba đẳng thức trên, ta được: \(P=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)\(\le\frac{\frac{y}{x+y}+\frac{z}{z+x}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{x}{z+x}+\frac{y}{y+z}}{2}=\frac{3}{2}\)(BĐT Cô-si)

Đẳng thức xảy ra khi x = y = z = \(\sqrt{3}\)

Khách vãng lai đã xóa
nguyễn hoàng linh
Xem chi tiết
Dương Đình	Huy
26 tháng 4 2020 lúc 8:39

\(E= {\sum {(yz)^2 \over xy+zx}}\)>=3/2 (AD BĐT Nesbit)

Dấu = xảy ra <=>x=y=z=1

Khách vãng lai đã xóa
Thanh Tùng DZ
26 tháng 4 2020 lúc 9:39

đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow abc=\frac{1}{xyz}=1\)

Ta có : \(x+y=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=c\left(a+b\right)\)

Tương tự : \(y+z=a\left(b+c\right);x+z=b\left(c+a\right)\)

\(\Rightarrow E=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

\(\Rightarrow E\ge\frac{3}{2}\)

Vậy GTNN của E là \(\frac{3}{2}\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
Thanh Tùng DZ
26 tháng 4 2020 lúc 9:43

1 cách khác Engel nữa,

\(E=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\)

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\left(a+b+c\right)^2=\left(\frac{a}{\sqrt{b+c}}.\sqrt{b+c}+\frac{b}{\sqrt{c+a}}.\sqrt{c+a}+\frac{c}{\sqrt{a+b}}.\sqrt{a+b}\right)^2\)

\(\le\left(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\right)\left(2a+2b+2c\right)\)

\(\Rightarrow E\ge\frac{a+b+c}{2}\ge\frac{3\sqrt[3]{abc}}{2}=\frac{3}{2}\)

Vậy ....

Khách vãng lai đã xóa
Nguyễn Thu Thủy
Xem chi tiết
Edogawa Conan
27 tháng 7 2021 lúc 15:42

Ta có: \(P=\frac{\sqrt{x}}{1+x+xy}+\frac{\sqrt{y}}{1+y+yz}+\frac{\sqrt{z}}{1+z+xz}\)

\(P=\frac{\sqrt{x}}{xy+x+1}+\frac{x\sqrt{y}}{x+xy+xyz}+\frac{xy\sqrt{z}}{xy+xyz+x^2yz}\)

\(P=\frac{\sqrt{x}}{xy+x+1}+\frac{x\sqrt{y}}{xy+x+1}+\frac{\sqrt{xy}.\sqrt{xyz}}{xy+x+1}\)

\(P=\frac{\sqrt{x}+x\sqrt{y}+\sqrt{xy}}{xy+x+1}\le\frac{\frac{x+1}{2}+\frac{x\left(y+1\right)}{2}+\frac{xy+1}{2}}{xy+x+1}\) (bđt cosi)

=> \(P\le\frac{x+1+xy+x+xy+1}{2\left(xy+x+1\right)}=\frac{2\left(xy+x+1\right)}{2\left(xy+x+1\right)}=1\)

Dấu "=" xảy ra<=> x =  y = z = 1

Vậy MaxP = 1 <=> x = y = z = 1

Khách vãng lai đã xóa
Bach Mai Phuong
Xem chi tiết
Nhật đẹp trai
5 tháng 3 2020 lúc 16:53

cậu tự mà làm đi sao cứ bắt người khác làm hộ vậy

Khách vãng lai đã xóa
Ngô Văn Tuyên
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
Phạm Thị Nguyệt Hà
Xem chi tiết