Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lam Giang
Xem chi tiết
Phạm Lê Thiên Triệu
8 tháng 11 2018 lúc 10:22

gọi UCLN(2n+5;3n+7)=d

ta có:2n+5 chia hết d (1)

3n+7 chia hết d (2)

(1)+(2)=>(3n+7)-(2n+5)=n+2 chia hết d (3)

(3)=>2(n+2)=2n+4 chia hết d (4)

(1)+(4)=>(2n+5)-(2n+4)=1 chia hết d

=>d=1

mà UCLN của 2 số =1 thì 2 số đó là 2 số ng/t/cg/nh

vậy:.................

Nguyễn Lam Giang
8 tháng 11 2018 lúc 17:18

tại sao lại lấy 1,2,3, ..... trừ cho nhau

Phạm Lê Thiên Triệu
8 tháng 11 2018 lúc 17:19

thì để ra 1 số mới,sử dụng số đó để giải bài toán!

Nguyễn Thùy Trang
Xem chi tiết
Huỳnh Rạng Đông
26 tháng 1 2017 lúc 9:31

Gọi d là ƯCLN( 2n+3;3n+4)

=> 2n+3 chia hết cho d và 3n+4 chia hết cho d

=> (2n+3) - (3n+4) chia hết cho d

=> 3(2n+3) - 2(3n+4) chia hết cho d

=> (6n+9) - (6n+8) chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯCLN(2n+3; 3n+4) = 1

Vậy  2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau

Nguyễn Thùy Trang
26 tháng 1 2017 lúc 9:24

Các bn trả lời nhanh giùm mình nha.

Trương Thanh Nhân
26 tháng 1 2017 lúc 9:26

quá dễ:

Ta có: gọi ước chung lớn nhất của 2n + 3    và    3n + 4   là d

theo đề, ta lại có:   (2n+3) :   (3n+4) = d

                          3(2n+3) : 2(3n+4) = d

                            (6n+9): (6n + 8)  = d

  Suy ra d = 1

vậy UWCLN của 2n+3 và 3n+4 là 1

Do đó 2n+3 và 3n+ 4 là hai số nguyên tố cùng nhau

Quỳnh Chi Nguyễn Ngọc
Xem chi tiết
Blue Moon
20 tháng 12 2018 lúc 22:07

Bài 1:

Ta có: \(2+2^2+2^3+...+2^{2010}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right).\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(2+2^2+2^3+...+2^{2010}=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

bài 2:

Gọi d là ƯCLN của 2n+3 và 3n+4 \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}1⋮d\Rightarrow d=1}\)

\(\RightarrowƯCLN\left(2n+3;3n+4\right)=1\)

\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau

Yoona Nguyễn
Xem chi tiết
Huyền Nhi
22 tháng 6 2016 lúc 14:26

Đặt d ϵ Ư( 2n+1; 2n+3) ĐK: d ϵ N*

=> 2n+1 chia hết cho d, 2n+3 chia hết cho d

=> (2n+3)-(2n+1) chia hết cho d

=> 2 chia hết cho d => d ϵ Ư(2) => d ϵ {1;2} (vì d ϵ N*)

Mặt khác, d là ước của 2 số lẻ 2n+1 và 2n+3 nên d=1.

=> Ư(2n+1; 2n+3)=1

Vậy 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.

  

 

Vũ Khánh Ngân
Xem chi tiết
Nguyễn Trúc Phương
Xem chi tiết
Hà Quang Huyên
Xem chi tiết
Nguyễn Thùy Dung
14 tháng 11 2021 lúc 11:52

em ko biết là em đúng hay sai chị thông cảm nhéundefined

Khách vãng lai đã xóa
Akina Minamoto
Xem chi tiết
Đoàn Văn Doanh
Xem chi tiết
Lại Nguyễn Ngọc Dũng
4 tháng 12 2017 lúc 10:41

Gọi UCLN(2n+1; 2n+3) là d

Ta có:2n+1 chia hết cho d =>2n+3-2n+1 chia hết cho d =>2chia hết cho d =>d thuộc {1:2}

          2n+3 chia hết cho d 

Mà 2n+1 là số lẻ =>d Không thuộc {2}

Vậy d thuộc {1}=>2n+1 và 2n+3 là 2 số nguyên tố cùng nhau. 

\(\text{Gọi }\left(2n+1,2n+3\right)=d\)

\(\Rightarrow\hept{\begin{cases}\left(2n+1\right)⋮d\\\left(2n+3\right)⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)=2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

\(\text{Dễ thấy }\hept{\begin{cases}2n+1\text{không chia hết cho 2 }\\2n+3\text{không chia hết cho 2 }\end{cases}}\)

\(\Rightarrow d\ne2\Rightarrow d=1\)

\(\text{Vậy }\left(2n+1,2n+3\right)=1\)