giải phương trình: x/2004+(x+1)/2005+(x+2)/2006+(x+3)/2007=4
Giải Phương trình sau:
a:(x+1)/4-(x+2)/5+(x+4)/7-(x+5)/8+(x+7)/10-(x+9)/12=0
b:x/2004+(x+1)/2005+(x+2)/2006+(x+3)/2007=4
a) \(\frac{x+1}{4}-\frac{x+2}{5}+\frac{x+4}{7}-\frac{x+5}{8}+\frac{x+7}{10}-\frac{x+9}{12}=0\)
\(\Leftrightarrow\)\(\frac{x+1}{4}-1-\frac{x+2}{5}+1+\frac{x+4}{7}-1-\frac{x+5}{8}+1+\frac{x+7}{10}-1-\frac{x+9}{12}+1=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}-\frac{3-x}{5}+\frac{x-3}{7}-\frac{3-x}{8}+\frac{x+3}{10}-\frac{3-x}{12}=0\)
\(\Leftrightarrow\)\(\frac{x-3}{4}+\frac{x-3}{5}+\frac{x-3}{7}+\frac{x-3}{8}+\frac{x-3}{10}+\frac{x-3}{12}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\right)=0\)
Vì \(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}\ne0\)
\(\Rightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy...
b) \(\frac{x}{2004}+\frac{x+1}{2005}+\frac{x+2}{2006}+\frac{x+3}{2007}=4\)
\(\Leftrightarrow\)\(\frac{x}{2004}-1+\frac{x+1}{2005}-1+\frac{x+2}{2006}-1+\frac{x+3}{2007}-1=0\)
\(\Leftrightarrow\)\(\frac{x-2004}{2004}+\frac{x-2004}{2005}+\frac{x-2004}{2006}+\frac{x-2004}{2007}=0\)
\(\Leftrightarrow\)\(\left(x-2004\right)\left(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\right)=0\)
Vì \(\frac{1}{2004}+\frac{1}{2005}+\frac{1}{2006}+\frac{1}{2007}\ne0\)
\(\Rightarrow\)\(x-2004=0\)
\(\Leftrightarrow\)\(x=2004\)
Vậy...
giải phương trình sau :
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
dễ mà bn,cộng 1 vào mỗi biểu thức và trừ vế 2 là xong
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)
\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)
Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)
Vậy \(x=-2009\)
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+2009\right)\left(\frac{1}{2005}+\frac{2}{2004}+\frac{1}{2003}\right)\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Rightarrow x+2009=0\)( Vì \(\frac{1}{2008}+\frac{1}{207}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\))
=> x = -2009
Giải phương trình sau :
\(\frac{x^2-2008}{2007}+\:\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\:\frac{x^2-\:2005}{2004}+\:\frac{x^2-2004}{2003}+\:\frac{x^2-2003}{2002}\)
Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)
=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)
=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)
=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)
=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> \(x^2-1=0\)
=> \(x^2=1\)
=> \(x=\pm1\)
Vậy phương trình có 2 nghiệm là x = 1, x = -1 .
Giải phương trình (1/1*2*3+1/2*3*4+1/3*4*5+...+1/2005*2006*2007)x=1*2+2*3+...+2006*2007
Giải phương trình:
1. \(\left(x^2+x\right)^2+4\left(x^2+x\right)^2=12\)
2. \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
câu 2 :
\(\Leftrightarrow\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}-\frac{x+4}{2005}-\frac{x+5}{2004}-\frac{x+6}{2003}\)=0
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x-2009}{2003}\)=0
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)\)
\(\Rightarrow x+2009=0\)
\(\Rightarrow x=-2009\)
giải phương trình
(2-x/2004)-1=(1-x/2005)-(x/2006)
\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
\(\Leftrightarrow\frac{2-x}{2004}-1+2=\frac{1-x}{2005}+1-\frac{x}{2006}+1\)
\(\Leftrightarrow\frac{2006-x}{2004}=\frac{2006-x}{2005}-\frac{2006-x}{2006}\)
\(\Leftrightarrow\frac{2006-x}{2004}-\frac{2006-x}{2005}+\frac{2006-x}{2006}=0\)
\(\Leftrightarrow\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2006}\right)=0\)
\(\Leftrightarrow2006-x=0\). Do \(\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2006}\ne0\)
\(\Leftrightarrow x=2006\)
Cho biểu thức hai biến f(x,y) = \left(3x-5y+2\right)\left(2x+4y-4\right)f(x,y)=(3x−5y+2)(2x+4y−4).
Tìm các giá trị của yy sao cho phương trình (ẩn xx) f(x,y)=0f(x,y)=0 nhận x=2x=2 làm nghiệm.
Trả lời: y=y=
hoặc y=y=
Giải phương trình
2 - x / 2004 - 1 = 1 - x / 2005 - x /2006
Ta có : \(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)
\(\Leftrightarrow\frac{2-x}{2004}+1=\frac{1-x}{2005}+1-\frac{x}{2006}+1\)
\(\Leftrightarrow\frac{2-x}{2004}+\frac{2004}{2004}=\frac{1-x}{2005}+\frac{2005}{2005}-\frac{x}{2006}+\frac{2006}{2006}\)
\(\Leftrightarrow\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)
\(\Leftrightarrow\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2006=0\)
\(\Rightarrow x=2006\)
Chúc bạn học tốt !!!
giải các phương trình sau:
)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2006}+\frac{x+6}{2003}\)
2005 x 2007 - 1 / 2004 + 2005 x 2006
ai nhanh 3 tick làm diễn giải nhá
2005 x 2007 - \(\frac{1}{2004}\)+ 2005 x 2006
= 4024035 - \(\frac{1}{2004}\)+ 4022030
= 4024035 + 4022030
= 8046065
\(\frac{2005.2007-1}{2004+2005.2006}=\frac{2005.2006+2005-1}{2004+2005.2006}=\frac{2005.2006+2004}{2004+2005.2006}=1\)
K CHO MIK NHA!