Tìm m để phương trình \(\frac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}=\sqrt{x-2}\) có nghiệm duy nhất
tìm m để pt có nghiệm duy nhất
\(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}=\sqrt{x-2}\)
\(dk:x>2\)
\(pt\Leftrightarrow x^2-2\left(m+1\right)x+6m-2=x-2\)
\(\Leftrightarrow x^2-\left(2m+3\right)x+6m=0\left(1\right)\)
\(TH1:\)\(\Delta=0\Rightarrow\left(2m+3\right)^2-24m=0\Leftrightarrow m=\dfrac{3}{2}\Rightarrow x=\dfrac{2.3}{2}+3=6>2\left(thỏa\right)\)
\(TH2:x1\le2< x2\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x1-2\right)\left(x2-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m+3\right)^2-24m>0\\x1x2-2\left(x1+x2\right)+4\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>\dfrac{3}{2}\\m< \dfrac{3}{2}\end{matrix}\right.\\6m-2\left(2m+3\right)+4\le0\Leftrightarrow m\le1\end{matrix}\right.\)\(\Leftrightarrow m\le1\)
\(\Rightarrow m\in(-\text{∞};1]\cup\left\{\dfrac{3}{2}\right\}\)
ĐKXĐ: \(x>2\)
\(Pt\Rightarrow x^2-2\left(m+1\right)x+6m-2=x-2\)
\(\Leftrightarrow f\left(x\right)=x^2-2\left(m+1\right)x+6m=0\)
\(\Delta'=\left(m+1\right)^2-6m=m^2-4m+1\)
TH1: pt trên có nghiệm kép và \(-\dfrac{b}{2a}>2\)
\(\Rightarrow\left\{{}\begin{matrix}m^2-4m+1=0\\m+1>2\end{matrix}\right.\) \(\Rightarrow m=2+\sqrt{3}\)
TH2: pt có 1 nghiệm bằng 2, 1 nghiệm lớn hơn 2
\(\Rightarrow4-4\left(m+1\right)+6m=0\Rightarrow m=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) (ktm)
TH3: pt có 2 nghiệm thỏa mãn \(x_1< 2< x_2\)
\(\Rightarrow f\left(2\right)< 0\Rightarrow2m< 0\Rightarrow m< 0\)
Vậy \(\left[{}\begin{matrix}m< 0\\m=2+\sqrt{3}\end{matrix}\right.\)
Tìm m để phương trình sau có nghiệm duy nhất
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)
\(\sqrt{x}+\sqrt{1-x}+2m\sqrt{x\left(1-x\right)}-2\sqrt[4]{x\left(1-x\right)}=m^3\)
viết lại đề à????????
cho phương trình \(\frac{x^2-2\left(m+1\right)x+6m-2}{x-2}=\sqrt{x-2}\), tìm m để phương trình có nghiệm duy nhất
\(\frac{x^2-2\left(m+1\right)x+6m-2}{x-2}=\sqrt{x-2}\)
Ta thấy phương trình luôn có nghiệm \(x=3\) m nên để phương trình có 1 nghiệm duy nhất ta suy ra:
\(\frac{x^2-2\left(m+1\right)x+6m-2}{3-2}=\sqrt{3-2}\)
\(\Rightarrow x^2-2\left(m+1\right)x+6m-2=1\)
\(\Rightarrow x^2-2\left(m+1\right)x+6m-3=0\)
\(\Rightarrow x^2-2x-3-2m\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)-2m\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x+1-2m\right)=0\left(1\right)\)
\(\Rightarrow\left(1\right)\) có hai nghiệm:\(\left[{}\begin{matrix}x=3\\x=2m-1\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\) có nghiệm kép \(=3\) hoặc \(\left(1\right)\) có nghiệm bé hơn \(2\)
\(\Rightarrow\left[{}\begin{matrix}2m-1=3\\2m-1< 2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=2\\m< \frac{3}{2}\end{matrix}\right.\)
Vậy.........................
Tìm m để phương trình \(x^2-2x+2\left(x-\sqrt{2x+m}\right)\left(\sqrt{x}+1\right)-m=0\) có nghiệm duy nhất trên đoạn [0;3].
(chỉ cần gợi ý cách biến đổi ra pt bậc 2 là đc)
\(\Leftrightarrow x^2-2x-m+\dfrac{2\left(x^2-2x-m\right)\left(\sqrt{x}+1\right)}{x+\sqrt{2x+m}}=0\)
\(\Leftrightarrow\left(x^2-2x-m\right)\left(1+\dfrac{2\left(\sqrt{x}+1\right)}{x+\sqrt{2x+m}}\right)=0\)
\(\Leftrightarrow x^2-2x-m=0\)
cho phương trình: \(m\sqrt{2x}-\left(\sqrt{2}-1\right)^2=\sqrt{2}-x+m^2\)
a/Tìm m để phương trình có nghiệm dương duy nhất
b/tìm m để phương trình có nghiệm \(x=3-\sqrt{2}\)
Cho biết phương trình: log5\(\dfrac{2\sqrt{x}+1}{x}=2log_3\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\) có nghiệm duy nhất x = a + b\(\sqrt{2}\) . Hỏi m = ? để hàm số y = \(\dfrac{mx+a-2}{x-m}\) có GTLN trên đoạn \(\left[1;2\right]\) bằng -2
Giống bài trước, \(x=3+2\sqrt{2}\) là nghiệm
\(\Rightarrow y=\dfrac{mx+1}{x-m}\Rightarrow y'=\dfrac{-m^2-1}{\left(x-m\right)^2}\) nghịch biến trên miền xác định
\(\Rightarrow\max\limits_{\left[1;2\right]}y=y\left(1\right)=\dfrac{m+1}{1-m}=-2\Rightarrow m\)
Tìm m để phương trình có nghiệm :
\(\left(\sqrt{x-1}-m\right).\left(\sqrt{x}+m\right)+m^2=2\sqrt[4]{x\left(x-1\right)}+1\)
cho \(\dfrac{x^2-2\left(m+1\right)x+6m-2}{\sqrt{x-2}}=\sqrt{x-2}\) với m bằng bao nhiêu thì pt có nghiệm duy nhất
ĐKXĐ: \(x>2\)
\(x^2-2\left(m+1\right)x+6m-2=x-2\)
\(\Leftrightarrow x^2-\left(2m+3\right)x+6m=0\) (1)
Pt có nghiệm duy nhất khi và chỉ khi (1) có 2 nghiệm pb thỏa mãn:
\(x_1\le2< x_2\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\f\left(2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\-2+2m< 0\end{matrix}\right.\) \(\Rightarrow m\le1\)
Tìm tham số m để hệ phương trình sau có nghiệm thực:
\(\begin{cases}X\sqrt{Y}+Y\sqrt{X}+2\left(\sqrt{X}+\sqrt{Y}\right)=12\sqrt{XY}\\X+2\sqrt{Y}+4\left(\frac{1}{X}+\frac{1}{\sqrt{Y}}\right)=m\left(\frac{X+2}{\sqrt{X}}\right)\end{cases}\)