giải phương trình
\(\frac{6}{x-5}+\frac{2}{x-8}=\frac{18}{x^2-13x+40}-1\)
Giải các phương trình:
\(a,\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(b,\frac{1}{x^2-5x+6}+\frac{2}{x^2-8x+15}+\frac{3}{x^2-13x+40}=\frac{6}{5}\)
giải phương trình:
\(\frac{1}{x^2-5x+6}+\frac{2}{x^2-8x+15}+\frac{3}{x^2-13x+40}+\frac{6}{5}=0\)
tìm giá trị của m để phương trình sau vô nghiệm:
\(m^2x+2x=5-3mx\)
3/(x^2-13x+40)+2/(x^2-8x+15)+1/(x^2-5x+6)+6/5+0
3/(x-8)(x-5)+2/(x-5)(x-3)+1/(x-3)(x-2)+6/5=0
1/(x-8)-1/(x-5)+1/(x-5)-1/(x-3)+1/(x-3)-1/(x-2)+6/5=0
1/(x-8)-1/(x-2)+6/5=0
ban tu giai tiep nhan
m^2x+2x=5-3mx
m^2x+3mx+2x=5
x(m^2+3m+2)=5
khi 0x=5 thi pt vo nghiem
m^2+3m+2=0
(m+1)(m+2)=0
m=-1 hoac m=-2
1.Giải phương trình: \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
2.Giải phương trình: \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
GIẢI PHƯƠNG TRÌNH:
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
phân tích mẫu thành nhân tử r áp dụng \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) sau đó rút gọn quy đồng
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\) \(\left(ĐKXĐ:x\ne0;x\ne-4;x\ne-5;x\ne-6;x\ne-7\right)\)
\(\Leftrightarrow\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x\left(x+4\right)+5\left(x+4\right)}+\frac{1}{x\left(x+5\right)+6\left(x+5\right)}+\frac{1}{x\left(x+6\right)+7\left(x+6\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x+6\right)\left(x+7\right)+\left(x+4\right)\left(x+7\right)+\left(x+4\right)\left(x+5\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{\left(x^2+13x+42\right)+\left(x^2+11x+28\right)+\left(x^2+9x+20\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{x^2+13x+42+x^2+11x+28+x^2+9x+20}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3x^2+33x+90}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{3\left(x^2+11x+30\right)}{\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=18.3\left(x^2+11x+30\right)\)
\(\Leftrightarrow\left(x+4\right)\left(x+5\right)\left(x+6\right)\left(x+7\right)=54\left(x+5\right)\left(x+6\right)\)
\(\Leftrightarrow\left(x+4\right)\left(x+7\right)=54\)
\(\Leftrightarrow x^2+11x+28-54=0\)
\(\Leftrightarrow x^2+11x-26=0\)
\(\Leftrightarrow x^2+13x-2x-26=0\)
\(\Leftrightarrow x\left(x+13\right)-2\left(x+13\right)=0\)
\(\Leftrightarrow\left(x+13\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+13=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-13\left(tm\right)\\x=2\left(tm\right)\end{cases}}\)
rần Duy Thanh:gà dữ đến dấu <=> thứ 3 r` mà còn quy đồng. What is your favourite food :v
1. Giải phương trình
a) \(\frac{2}{x^2-x-6}+\frac{x+1}{x^2+x-12}=\frac{x}{x^2+6x+8}\)
b) \(\frac{2x-5}{x^2+5x-36}-\frac{x-6}{x^2+3x-28}=\frac{x+8}{x^2+16x+63}\)
c) \(\frac{x-2}{4x^2-29x+30}-\frac{x+1}{20x^2-13x-15}=\frac{x+2}{5x^2-274x+18}\)
\(\dfrac{2}{x^2-x-6}+\dfrac{x+1}{x^2+x-12}=\dfrac{x}{x^2+6x+8}\)
\(\Leftrightarrow\dfrac{2}{\left(x-3\right)\left(x+2\right)}+\dfrac{x+1}{\left(x-3\right)\left(x+4\right)}=\dfrac{x}{\left(x+2\right)\left(x+4\right)}\)
=> 2(x+4)+(x+1)(x+2)=x(x-3)
⇔2x+8+x2+2x+x+2=x2-3x
⇔x2+5x+10=x2-3x
⇔x2-x2+5x+3x=-10
⇔8x=-10
\(\Leftrightarrow\dfrac{-5}{4}\)
Vậy S={-\(\dfrac{5}{4}\)}
Giải phương trình \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
Câu hỏi của Phạm Tiến Dũng new - Toán lớp 9 - Học toán với OnlineMath
Giải các phương trình:
\(a,\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(b,\frac{1}{x^2-5x+6}+\frac{2}{x^2-8x+15}+\frac{3}{x^2-13x+40}=\frac{6}{5}\)
giải phương trình
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
Ta có:
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}\) \(=\frac{1}{18}\)
\(\Leftrightarrow\)\(\frac{1}{\left(x+4\right)\left(x+5\right)}\) \(+\frac{1}{\left(x+5\right)\left(x+6\right)}\) \(+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}\) \(=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x-26=0\Leftrightarrow\hept{\begin{cases}x_1=2\\x_2=-13\end{cases}}\)
Vậy nghiệm của phương trình là {2;-13}
Giải các phương trình sau:
c)\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
d) \(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(ĐKXĐ:x\ne-4;x\ne-5;x\ne-6;x\ne-7\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Rightarrow\frac{3}{\left(x+4\right)\left(x+7\right)}=\frac{3}{54}\)
\(\Rightarrow\left(x+4\right)\left(x+7\right)=54\)
\(\Leftrightarrow x^2+11x+28=54\)
\(\Leftrightarrow x^2+11x-26=0\)
Ta có \(\Delta=11^2+4.26=225,\sqrt{\Delta}=15\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+15}{2}=2\\x=\frac{-11-15}{2}=-13\end{cases}}\)
Vậy tập nghiệm S = {2;-13}