Tim cac so nguyen thoa man (x+y)^2=(x-1)(y+1)
a)Tim tat ca cac so nguyen duong x, y , z thoa man: \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)la so huu ti, dong thoi x2 + y2+ z2 la so nguyen to.
b) Tim so tu nhien x, y thoa man: x(1+x+x2) = y(y-1).
tim cac so nguyen x,y thoa man: 1/x-1/3=1/y voi x,y khac 0
tim cac so huu ti x y thoa man x+y va 1/x +1/y nguyen duong
Tim cac so nguyen duong thoa man: 1/x+1/y=2/3
Giả sử :
\(x\le y\)(1)
=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{y}\)
=> \(\frac{2}{3}\ge\frac{2}{y}\)
=> \(\frac{1}{3}\ge\frac{1}{y}\Rightarrow3\ge y\)(2)
Lại có :
\(\frac{1}{x}+\frac{1}{y}\le\frac{2}{x}\)
=> \(\frac{2}{3}\le\frac{2}{x}\Rightarrow3\le x\)(3)
Từ (1) , (2) , (3)
=> \(3\le x\le y\le3\)
=> x = y = 3
tim cac cap so nguyen ( x ; y ) thoa man : xy - x - y = 2
\(xy-x-y=2\)
\(\Rightarrow xy-x-y+1=3\)
\(\Rightarrow x\left(y-1\right)-1\left(y-1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=3\)
Tự xét được chứ :">
bài này thiếu điều kiện của x,y phải là x,y thuộc z
tim cac so nguyen x,y,z thoa man dieu kien sau
x^2=y-1
y^2=z-1
z^2=x-1
Tim tat cac cac cap so nguyen x,y thoa man a) x^2+5xy+4y^2
b)xy-2x+3y-1
Tim tat cac cac cap so nguyen x,y thoa man a) x^2+5xy+4y^2
b)xy-2x+3y-1
Tim tat cac cac cap so nguyen x,y thoa man a) x^2+5xy+4y^2
b)xy-2x+3y-1