chứng minh tỉ lệ thức a/b=c/d hãy chứng minh
a+b/b=c+d/d
HÃY CHỨNG MINH RẰNG TỪ TỈ LỆ THỨC a/b = c/d ( a-b khác 0 , c-d khác 0 ) ta có thể suy ra tỉ lệ thức a + b / a - c = c + d / c - d
Ta có a/b = c/d suy ra a/b = b/d
Áp dụng tính chất dãy tính chất tỉ số = nhau
a/c = b/d = a + b / c + d = a-b/c-d suy ra a+b / c-d = c+d/c-d.
**** MÌNH NHA BẠN.
từ giả thiết \(\Rightarrow\frac{b}{a}=\frac{d}{c}\)
ta có
\(\frac{2021a-b}{a}=\frac{2021a}{a}-\frac{b}{a}=2021-\frac{b}{a}=2021-\frac{d}{c}=\frac{2021c-d}{c}\)
vậy ta có dpcm
Cho tỉ lệ thức a/b=c/d chứng minh có tỉ lệ thức A+B/b = C+D/d
Theo đề ra, ta có:
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
Từ \(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
cho tỉ lệ thức: a/b = c/d. chứng minh ta có tỉ lệ thức: a/b = a+c/b+d = a-c/b-d
Ta có:
\(\frac{a}{b}=\frac{c}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(1\right).\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\left(2\right).\)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right).\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+c}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số bằng nhau )
Bài 7: Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức phải chứng minh đều có nghĩa):
a)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\) b)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\) d)\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
ai hộ mik vs
a, Áp dụng t/c dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
b, Áp dụng t/c dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{2a}{2c}=\dfrac{5b}{5d}=\dfrac{3a}{4c}=\dfrac{4b}{4d}=\dfrac{2a+5b}{2c+5d}=\dfrac{3a-4b}{3c-4d}\Rightarrow\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có \(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)
\(\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}=\dfrac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\dfrac{b^2\left(k-1\right)^2}{d^2\left(k-1\right)^2}=\dfrac{b^2}{d^2}\)
Do đó \(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
d, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
Do đó \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)
\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)
suy ra đpcm.
\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)
suy ra đpcm.
B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)
\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)
suy ra đpcm.
chứng minh. từ tỉ lệ thức a/b=c/d ta có thể suy ra tỉ lệ thức a+b/b=c+d/d
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)
\(\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\) (đpcm)
(Mik nghĩ zậy thui chứ ko chắc có trình bày đúng hay ko)
_Hok tốt_
!!!
chứng minh rằng từ tỉ lệ thức a/b=c/d ta có thể suy ra tỉ lệ thức a+b/a-b=c+d/c-d
\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( 1 )
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
1.cho tỉ lệ thức a/b=c/d chứng minh rằng ta có tỉ lệ thức
a+b/b=c+d/d;a+b/a-b/c+d/c-d