Tìm x,y nguyên dương thỏa mãn đẳng thức (x+y)(x+2y)=5+x.
cho x,y là hai số thực dương thỏa mãn đẳng thức x+y=2.Tìm GTLN của biểu thức M=x^2y^2(x^2+y^2)
Tìm các cặp số nguyên (x; y) thỏa mãn đẳng thức: \(x^2y+3x^2-4y=15\)
Tìm các số nguyên x, y thỏa mãn đẳng thức:
\(2y^2x+x+y+1=x^2+y^2+xy\)
1/ tìm x,y nguyên dương thỏa mãn: \(x^2-y^2+2x-4y-10=0\)0
2/giải pt nghiệm nguyên :\(x^2+2y^2+3xy+3x+5y=15\)
3/tìm các số nguyên x;y thỏa mãn:\(x^3+3x=x^2y+2y+5\)
4/tìm tất cả các nghiệm nguyên dương x,y thỏa mãn pt:\(5x+7y=112\)
cho x, y là 2 số nguyên dương khác nhau thỏa mãn đẳng thức xy=3(x+y)-5. Giá trị của x+y là
|x-2y-1|+5=10
Tìm x;y thỏa mãn đẳng thức trên
|x-2y-1|=10-5=5
x-2y-1=-5 hoac x-2y-1=5
x-2y=-4 hoac x-2y=6
............................................
............................................
Tìm tất cả các số nguyên tố (x;y) thỏa mãn đẳng thức: x2 - 2y2 = 1?
Biến đổi bt tương đương : (x^2-1) / 2 = y^2
Ta có: vì x,y là số nguyên dương nên
+) x > y và x phải là số lẽ.
Từ đó đặt x = 2k + 1 (k nguyên dương);
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Biến đổi bt tương đương : (x^2-1) / 2 = y^2
Ta có: vì x,y là số nguyên dương nên
+) x > y và x phải là số lẽ.
Từ đó đặt x = 2k + 1 (k nguyên dương);
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Nhớ like cho mình nha ^^
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)
Tìm các số x,y,z nguyên dương thỏa mãn đẳng thức:\(2\left(y+z\right)=x\left(yz-1\right)\)