GPT : \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
gpt: \(\sqrt{9x^2+16}=2\sqrt{2x+4}+4\sqrt{2-x}\)
gpt: \(\sqrt{9x^2+16}=2\sqrt{2x+4}+4\sqrt{2-x}\)
gpt: \(\sqrt{9x^2+16}=2\sqrt{2x+4}+4\sqrt{2-x}\)
nốt bài cuối : GPT\(\frac{6x-4}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{12x-8}{\sqrt{9x^2+16}}\)
Điều kiện xác định phương trình \(-2\le x\le2.\)
Phương trình tương đương với \(3x-2=0\) hoặc
\(\frac{1}{\sqrt{2x+4}+2\sqrt{2-x}}=\frac{2}{\sqrt{9x^2+16}}\leftrightarrow\sqrt{9x^2+16}=2\sqrt{2x+4}+4\sqrt{2-x}\)
Trường hợp 1. \(3x-2=0\leftrightarrow x=\frac{3}{2}.\)
Trường hợp 2. \(\sqrt{9x^2+16}=2\sqrt{2x+4}+4\sqrt{2-x}\).
Ta đánh giá vế trái như sau: theo bất đẳng thức Bunhia \(\sqrt{9x^2+16}\ge\sqrt{6}x+\frac{4}{\sqrt{3}}\).
Mặt khác vế phải không vượt quá \(\sqrt{3+2\sqrt{2}}\cdot\sqrt{\frac{8x+16}{3+2\sqrt{2}}}+\sqrt[4]{2}\cdot\sqrt{\frac{32-16x}{\sqrt{2}}}\le\sqrt{6}x+\frac{4}{\sqrt{3}}\)
Vì vậy ta có dấu bằng xảy ra, hay \(x=\frac{4\sqrt{2}}{3}.\)
gpt: \(\sqrt{9x^2+16}=2\sqrt{2x+4}+4\sqrt{2-x}\)
Gpt :
1) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
2) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+s}+\sqrt{x+1}=16\)
3)\(\sqrt{4x+20}+\sqrt{x+5}-\frac{1}{3}\sqrt{9x+45}=4\)
4) \(\frac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
gpt bằng pp đặt ẩn phụ k hoàn toàn:
1, \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
2, \(\left(3x+2\right)\sqrt{2x-3}=2x^2+3x-6\)
Gpt:
\(3\sqrt{2}-5\sqrt{8x}+\sqrt{18x}=28\)
\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}=16\sqrt{x+1}\)
b,\(\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}-16\sqrt{x+1}=0\) (dk \(x\ge-1\)
\(\Leftrightarrow\sqrt{x+1}\left(4-3+2-16\right)=0\)
\(\Leftrightarrow\sqrt{x+1}.-13=0\)
\(\Leftrightarrow x=-1\)
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
6) ĐKXĐ: \(x\le-6\)
\(\sqrt{\left(x+6\right)^2}=-x-6\Leftrightarrow\left|x+6\right|=-x-6\)
\(\Leftrightarrow x+6=x+6\left(đúng\forall x\right)\)
Vậy \(x\le-6\)
7) ĐKXĐ: \(x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\sqrt{\left(3x-2\right)^2}=3x-2\Leftrightarrow\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x-2=3x-2\left(đúng\forall x\right)\)
Vậy \(x\ge\dfrac{2}{3}\)
8) ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{\left(4-3x\right)^2}=2x-10\)\(\Leftrightarrow\left|4-3x\right|=2x-10\)
\(\Leftrightarrow4-3x=10-2x\Leftrightarrow x=-6\left(ktm\right)\Leftrightarrow S=\varnothing\)
9) ĐKXĐ: \(x\ge\dfrac{3}{2}\)
\(pt\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x-3\Leftrightarrow\left|x-3\right|=2x-3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x-3\left(x\ge3\right)\\x-3=3-2x\left(\dfrac{3}{2}\le x< 3\right)\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=2\left(tm\right)\end{matrix}\right.\)