Cho a,b>0 và a+b≤ 4 . Tìm giá trị nhỏ nhất của A = \(\frac{2}{a^2+b^2}+\frac{32}{ab}+2ab\sqrt{2}\)
Cho a,b lớn hơn 0 thỏa a+b = 4. Tìm giá trị nhỏ nhất của A = \(\frac{2}{a^2+b^2}+\frac{35}{ab}2ab\)
cho a>0, b>0 và \(a+b\ge4\)
tìm giá trị nhỏ nhất của
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
Cho a>0 ; b>0 và \(a+b\le4\)
tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)
\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)
\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)
Chúc bạn học tốt !!!
Cho các số không âm a,b,c thỏa mãn không có hai số nào đồng thời bằng 0 và a2+b2+c2=2(ab+bc+ac). Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{\frac{ab}{a^2+b^2}}+\sqrt{\frac{bc}{b^2+c^2}}+\sqrt{\frac{ca}{c^2+a^2}}\)
Cho hai số thực a,b khác 0 thõa mãn \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S=ab+2019
\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)
Hay \(ab\le2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà
Cho biểu thức
\(m=\left[\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right]:\left[1+\frac{a+b+2ab}{1-ab}\right]\)
a) Rút gọn M
b) Tính giá trị M với \(a=\frac{2}{2-\sqrt{3}}\)
c) Tìm gí trị lớn nhất của M
https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download
cho các số dương a,b và x=\(\frac{2ab}{b^2+1}\). xét biểu thức P=\(\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}+\frac{1}{3b}\)
1. chứng minh P xác định. Rút gọn P
2.Khi a và b thay đổi, hãy tìm giá trị nhỏ nhất của P
Bài 1:Cho a,b,c>0. Chứng minh rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)
Bài 2: Cho 3 số dương a,b,c. Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)+a^2+b^2+c^2-ab-bc-ca+2020\)
Bài 1: Ta có \(\left(\frac{a^2}{b}-a+b\right)+b^2=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\) (áp dụng Bất Đẳng Thức Cosi)
\(=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\)
\(\Rightarrow\frac{a^2}{b}-a+2b\ge\sqrt{a^2-ab+b^2}+\frac{1}{2}\left(a+b\right)\left(1\right)\)
Tương tự ta có \(\hept{\begin{cases}\frac{b^2}{c}-b+2c\ge\sqrt{b^2-bc+c^2}+\frac{1}{2}\left(b+c\right)\left(2\right)\\\frac{c^2}{a}-c+2a\ge\sqrt{c^2-ac+a^2}+\frac{1}{2}\left(a+c\right)\left(3\right)\end{cases}}\)
Từ (1) và (2) và (3) \(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ac+a^2}\)
Dấu "=" xảy ra khi a=b=c
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)