cho f(x)=\(x^{17}-2015x^{16}+2015x^{15}-2015x^{14}+..+2015x-1\)
tính f (2014)
f(x)=x17-2015x16+2015x15-2015x14+...+2015x-1
Tính f(2014)
~~~FIGHTING~~~
x=2014 => x+1 = 2015
f(2014) = x^17 - (x+1)x^16 + ... + (x+1)x -1
= x^17 - x^17 - x^16 + x^16 - x^15 - ... + x^2 + x -1
= x - 1 = 2013
Ta thấy \(x=2014\Rightarrow x+1=2015\)
Ta có: \(f\left(2014\right)=x^{17}-\left(x+1\right)x^{16}+\left(x+1\right)x^{15}-...+\left(x+1\right)x-1\)
\(=x^{17}-x^{17}-x^{16}+x^{16}+x^{15}-...+x^2+x-1\)
\(=x-1\)(1)
Thay x=2014 vào (1) ta được:
\(f\left(2014\right)=2014-1\)
\(=2013\)
Cho: \(f\left(x\right)=x^{17}-2015x^{16}+2015x^{15}-2015x^{14}+....+2015x-1 \)
Tính\(f\left(2014\right)\)
Ta có :\(x=2014\Rightarrow2015=x+1\)
\(\Rightarrow f\left(2014\right)=x^{17}-\left(x+1\right)x^{2016}+\left(x+1\right)x^{2015}-.....+\left(x+1\right)x-1\)
\(=x^{17}-x^{17}-x^{2016}+x^{2016}+x^{2015}-....+x^2+x-1\)
\(=x-1=2014-1=2013\)
Cho\(f\left(x\right)=\)\(x^{17-}2015x^{16}+2015x^{15}-2015x^{14}+....+2015x-1\)\(1\)
Tính \(f\left(2014\right)\)
Cho f (x) = x17- 2015x16 +2015x15 - 2015x14 +........+ 2015x -1 . Tính f (2014)
=> Các bạn giúp mình với ạ ✔
f(x) = x17 - 2015x16 + 2015x15 - 2015x14 +......+ 2015x -1
Giải hộ , mình tick cho
f(x) = x17-2015x16+2015x15-2015x14+...+2015x-1
ta có x=2014
=> 2015=2014+1=x+1
f(x)=x17-(x+1)x16+(x+1)x15-(x+1)x14+...+(x+1)x-1
=x17-x17-x16+x16+x15-x15-x14+...+x2+x-1
=x-1
=2014-1=2013
Cho f(x) = \(x^{2014}-2015x^{2013}+2015x^{2012}-2015x^{2011}+.....-2015x+2015.\)
Tính f(2014)
cho hàm số f(x)=x^2014-2015x^2013+2015x^2012= 2015x^2011+....-2015x+2015. khi đó f(2014)=.....
GIẢI CHI TIẾT NHÉ|
Cho hàm số f(x) = \(x^{2014}-2015x^{2013}+2015x^{2012}-2015x^{2011}+...-2015x+2015\)
Khi đó f(2014)=
=> \(f\left(x\right)=x^{2014}-\left(2014+1\right)x^{2013}+\left(2014+1\right)x^{2012}+...-\left(2014+1\right)x+2014+1\)
Mà x = 2014
=> \(f\left(2014\right)=x^{2014}-\left(x+1\right)x^{2013}+\left(x+1\right)^{2012}+...-\left(x+1\right)x+x+1\)
\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}-x^{2012}+....-x^2-x+x+1\)
\(=1\)
=> f(2014) = 1
Cho hàm số f(x) =\(x^{2014}-2015x^{2013}+2015x^{2012}-2015x^{2011}+...-2015x+2015\)
Khi đó: f(2014)=........