A= 1 + 3 + 5 + ......................... + 2005 + 2007 + 2009
A=1+2+3+5+...+2005+2007+2009
Số hạng của dãy là: (2009 - 1) : 2 + 1 = 1005 (Số)
Tổng của dãy đó là: (2009 + 1) x 1005 : 2 = 1 010 025
⇔ A = 1010025
Ta có : \(A=1+2+3+5+...+2009\)
\(=2+1+3+5+...+2009\)
Ta lại có : \(1+3+5+7+...=\dfrac{\left(2009+1\right).\left(\dfrac{2009-1}{2}+1\right)}{2}=1010025\)
\(\Rightarrow A=2+1010025=1010027\)
Vậy ...
2008+2007/2+2006/3+2005/4+2005/5+........................3/2006+2/2007+1/2008
1/2+1/3+1/4+1/5+....................+1/2009
2008-1/2008=2007/2008
1/2-1/2009=2007/2009
2008+2007/2+2006/3+2005/4+2005/5+........................3/2006+2/2007+1/2008
1/2+1/3+1/4+1/5+....................+1/2009
Tính:1+3+5+...+2005+2007+2009=
Khoảng cách : `2`
Có tất cả số hạng :
` ( 2009 -1) : 2 + 1 = 1005 (số)`
Tổng dãy số trên :
` ( 2009 + 1) xx 1005 : 2 = 1010025`
số số hạng là : ( 2009 - 1 ) : 2 + 1 = 1005 ( số hạng )
a= ( 1 + 2009 ) x 1005 : 2 = 1010025
Vậy A = 1010025
A=2008+2007/2+2006/3+2005/4+......+2/2007+1/2008 tất cả trên 1/2+1/3+1/4+1/5+......+1/2008+1/2009
\(B=2008+\frac{2007}{2}+\frac{2006}{3}+\frac{2005}{4}+...+\frac{2}{2007}+\frac{1}{2008}\)
\(=1+1+\frac{2007}{2}+1+\frac{2006}{3}+...+1+\frac{1}{2008}\)
\(=\frac{2009}{2009}+\frac{2009}{2}+\frac{2009}{3}+...+\frac{2009}{2008}\)
\(=2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)
Suy ra \(A=2009\).
Tính A/ B biết
A= 2008+ 2007/2 + 2006/3 + 2005/4+....+ 2/2007+ 1/2008 ; B = 1/2+1/3+1/4+1/5+....1/2008+1/2009
A =2008 + 2007/2 + 2006/3 + 2005/4 +.......+ 2/2007 + 1/2008
1/2 + 1/3 + 1/4 + 1/5 +....+ 1/2008 + 1/2009
d) D = 1 - 3 + 5 - 7 + ... + 2005 - 2007 + 2009 - 2011
D = (1 - 3) + (5 - 7) + ... + (2005 - 2007) + (2009 - 2011)
D = (-2)+(-2)+(-2)+...+(-2) có 503 số -2D
D= - 1006
x+1/2009 + x+3/2007 = x+5/2005 = x+7/1993
\(\frac{x+1}{2009}+\frac{x+3}{2007}=\frac{x+5}{2005}+\frac{x+17}{1993}\\ \Leftrightarrow\frac{x+1}{2009}+1+\frac{x+3}{2007}+1=\frac{x+5}{2005}+1+\frac{x+17}{1993}\\ \Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}-\frac{x+2010}{2005}-\frac{x+2010}{1993}=0\\ \Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{1993}\right)=0\\ \Leftrightarrow x+2010=0\\ \Leftrightarrow x=-2010\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{-2010\right\}\)
\(\frac{x+1}{2009}+\frac{x+3}{2007}=\frac{x+5}{2005}+\frac{x+7}{1993}\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+3}{2007}+1=\frac{x+5}{2005}+1+\frac{x+7}{1993}+1\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}=\frac{x+2010}{2005}+\frac{x+2010}{1993}\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2007}-\frac{x+2010}{2005}-\frac{x+2010}{1993}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2007}-\frac{1}{2005}-\frac{1}{1993}\right)=0\)
\(\Leftrightarrow x-2010=0\Leftrightarrow x=2010\)
Vậy \(x=2010\)