Cho tổng sau: S=\(1+7+7^2+7^3+7^4+...+7^{30}\)
Tìm số tự nhiên n sao cho 6S+1= \(7^n\)
Cho tổng sau :
S = 1 + 7 + 72 + 73 + 74 +.....+ 730
Tìm số tự nhiên n sao cho 6s + 1 = 7n
Cho S = 1 + 7 + 72... +730
Tìm số tự nhiên n sao cho 6S+1=7n.
Các bạn giúp mìn gấp với. Mai nộp rồi. Đúng mình tick cho.
tink nhé bài này dễ quá đúng 100%
S=1+7+7^2+...+7^30
7S=7+7^2+...+7^30+7^31
7S-S=7^31-1
6S=7^31-1
=>6S+1=7^31 =>n=31
Cho tổng sau : 1 + 7 +72+73+74+....+730
Tìm số tự nhiên n sao cho 6S + 1 = 7^n
Ai nhanh mk tick
Ta có ;
S = 1 + 7 + 7 2 + 7 3 + 7 4 + .... + 7 30
=> 7S = 7 + 7 2 + 7 3 + 7 4 + 7 5 + .... + 7 31
=> 7S - S = ( 7 + 7 2 + 7 3 + 7 4 + 7 5 + .... + 7 31 ) - ( 1 + 7 + 7 2 + 7 3 + 7 4 + .... + 7 30 )
=> 6S = 7 31 - 1
=> 6S + 1 = 7 31 - 1 + 1
=> 6S + 1 = 7 31
=> n = 31
a) Cho S=1+7+7^2+7^3+7^4+...+7^30
Tim so n sao cho: 6S+1=7^n
b) tim so nguyen to p+2; p+8; p+16 la cac so nguyen to
CMR: bai toan chi co 1 dap so
Bài 1 :Tìm số tự nhiên N sao cho
n+3 chia hết cho n-1
4n+3 chia hết cho 2n+1
Bài 2: Cho số tự nhiên:A=7+7^1+7^2+7^3+7^4+............+7^8.
số A là chẵn hay lẽ?
Số A có chia hết cho 5 ko?
Chữ số tận cùng của A là chữ số nào?
bài 1
a ) n+3 chia hết cho n -1 suy ra n-1+4 chia hết cho n-1 suy ra 4 chia hết cho n-1
suy ra n-1 thuộc Ư(4)
mà Ư(4)={1;2;4} nên n-1 thuộc {1;2;4} nên n thuộc {2;3;5}
b) 4n+3 chia hết cho 2n+1 nên 2.2n+1+2 chia hết cho 2n+1
suy ra 2 chia hết cho 2n+1 suy ra 2n+1 thuộc Ư(2)
mà Ư(2) = {1;2} nên 2n+1 thuộc {1;2}
nên 2n thuộc {0;1} nên n thuộc {0}
Bài 2 :
a là chẵn
a chia hêt cho 5
chữ số tận cùng của a là 0
ko biết có đúng ko, nếu sai thì cho mình xin lỗi
biết cũng ko giúp ok dễ ợt tự lực cánh sinh đi em gái
n+4 chia hết cho n+2
n^2+n chia hết cho n^2+1
Câu 1: Số các số tự nhiên n biết 2n-5chia hết cho n+1
Câu 2; Tìm x biết 2/7+(-8)/9= x - 2/3
Câu 3: Tổng bình phương của các số nguyên x thỏa mãn -7/4<x<7/2
Câu 4: Cho hai số tự nhiên (x,y) sao cho: (x-3)(2y+5)=74
Tập hợp các giá trị của y thỏa mãn là {...}
Câu 5: Cho Q=1/30+1/42+1/56+1/72+1/90. Khi đó 10Q=
Giúp mình vs mình cần gấp.
cau 1 :1,6
câu 2 : sai đề bài
cau 3 chua lam duoc
cau 4 : chua lam duoc
cau 5 :101/10
1) 2n - 5 \(⋮\)n + 1
2(n + 1) - 7 \(⋮\)n + 1
Do 2(n+1) \(⋮\)n+1 nên 7 \(⋮\)n+1 \(\Rightarrow\)n + 1 \(\in\)Ư(7) = { 1; -1; 7; -7}
Với n + 1 = 1 \(\Rightarrow\)n = 0
n + 1 = -1 \(\Rightarrow\)n = -2
n + 1 = 7 \(\Rightarrow\)n = 6
n + 1 = -7 \(\Rightarrow\)n = -8
Vậy n = { 0; -2; 6; -8}
1,tìm só tự nhiên A sao cho Amũ3 có 10 chữ số trong đó 2 chữ số đầu tiên là 7 và chữ số cuối cùng cũng là 7
2, có thể tìm được hay ko số tự nhiên n đẻ tổng
S=1+2+3+.......+n=567 được hay ko?
1.Tính bằng cách hợp lí:
A)(2^2017x3+2^2017x5):2^2018
2.Tìm x:
A)2+x:5=6;b)5x(7+48:x)=45;c)5^2x-3 -2x5^2=5^2x3
3.So sánh:
25^30 và 125^19
4.Tính tổng:
S=7^0+7^1+7^2+7^3+...+7^100
5.Cho biết n bằng bao nhiêu?
Cho Q=1+2+2^2+....+2^49.Tìm số tự nhiên n biết Q+1=2^n
Các bn giúp mk nha😭😭
1. \(A=\left(2^{2017}\cdot3+2^{2017}\cdot5\right):2^{2018}\)
\(A=\left[2^{2017}.\left(3+5\right)\right]:\left(2^{2018}\right)\)
\(A=\left[2^{2017}.2^3\right]:\left(2^{2018}\right)\)
\(A=2^{2020}:2^{2018}=2^2=4\)
2. a) 2 + x : 5 = 6
=> x : 5 = 4
=> x = 20
b) 5x(7 + 48:x) = 45
=> x(7 + 48:x) = 9
=> 7x + 48 = 9
=> 7x = -39
=> x = -39/7.
c) Không hiểu đề câu này cho lắm.
3. \(25^{30}=\left(5^2\right)^{30}=5^{60};125^{19}=\left(5^3\right)^{19}=5^{57}\)
Vì 60 > 57 => \(25^{30}>125^{19}\)
4. \(S=1+7^1+...+7^{100}\)
\(\Rightarrow7S=7+7^2+...+7^{101}\)
\(\Rightarrow7S-S=7+7^2+...+7^{101}-1-7-...-7^{100}\)
\(\Rightarrow6S=7^{101}-1\)
\(\Rightarrow S=\frac{7^{101}-1}{6}\)
5. \(Q=1+2+2^2+...+2^{49}\)
\(\Rightarrow2Q=2+2^2+...+2^{50}\)
\(\Rightarrow2Q-Q=2+2^2+...+2^{50}-1-2-...-2^{49}\)
\(\Rightarrow Q=2^{50}-1\)
\(\Rightarrow2^{50}-1+1=2^n\)
\(\Rightarrow2^{50}=2^n\Rightarrow n=50\)
1) Tìm số tự nhiên n nhỏ nhất sao cho khi chia n cho 3, 5, 7 thì được số dư lần lượt là 2, 3, 4?
2) Tìm số tự nhiên lớn nhất có 3 chữ số sao cho khi chia n cho 8 dư 7, chia n cho 31 dư 28?
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3, 5, 7). Do 3, 5, 7 là các số nguyên tố cùng nhau nên BCNN(3, 5, 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8, 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8, 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài
Bài 1:
Do n chia 3 dư 2 nên n = 3a + 2 (a ∈ N).
Ta có 2n - 1 = 2(3a + 2) - 1 = 2.3a + 3 = 3(2a + 1) nên 2n - 1 chia hết cho 3 (1)
Tương tự, ta có:
n = 5b + 3 (b ∈ N); 2n - 1 = 2(5b + 3) - 1 = 2.5b + 5 = 5(2b + 1) nên 2n - 1 chia hết cho 5 (2)
n = 7c + 4 (c ∈ N); 2n - 1 = 2(7c + 4) - 1 = 2.7c + 7 = 7(2c + 1) nên 2n - 1 chia hết cho 7 (3)
Từ (1), (2), (3) và yêu cầu tìm số n nhỏ nhất, ta có 2n - 1 là BCNN(3; 5; 7). Do 3; 5 và 7 là các số nguyên tố cùng nhau nên BCNN(3; 5; 7) = 3.5.7 = 105. Vậy 2n - 1 = 105 => 2n = 105 + 1 = 106 => n = 106:2 = 53
Vậy n = 53 là số tự nhiên nhỏ nhất thỏa điều kiện của đề bài
Bài 2:
Do n chia 8 dư 7 nên n = 8a + 7 (a ∈ N).
Ta có n + 65 = 8a + 7 + 65 = 8a + 72 = 8(a + 9) chia hết cho 8 (1)
Tương tự, n chia 31 dư 28 nên n = 31b + 28 (b ∈ N)
Ta có n + 65 = 31b + 28 + 65 = 31b + 93 = 31(b + 3) chia hết cho 32 (2)
Từ (1) và (2) ta có n + 65 là UC(8; 31). Do 8 và 31 là các số nguyên tố cùng nhau nên UC(8; 31) có dạng 8.31m = 248m (m ∈ N).
Như vậy: n + 65 = 248m, (m ∈ N) => n = 248m - 65, (m ∈ N) (3)
Theo đề bài, ta cần tìm n là số lớn nhất có ba chữ số thỏa mãn điều kiện (3)
Xét m = 5, ta có n = 248.5 - 65 = 1240 - 65 = 1175 không đáp ứng điều kiện n có ba chữ số
Xét m = 4, ta có n = 248.4 - 65 = 992 - 65 = 927, đáp ứng điều kiện n có ba chữ số
Vậy n = 927 là số lớn nhất có ba chữ số thỏa mãn điều kiện của đề bài