Cho P = 1.2.3+2.3.4+3.4.5+...+n.(n+1)(n+2) với n \(\in\) N* chứng minh P là số chính phương.
Cho A=1.2.3+2.3.4+3.4.5+......+n(n+1).n(n+2) (n thuộc N)
Chứng minh rằng:4A +1 là số chính phương
Cho A=1.2.3+2.3.4+3.4.5+..n(n+1)(n+2)(n thuộc N
CMR:4A+1 là số chính phương
Đề bài: Cho A = 1.2.3 + 2.3.4 + 3.4.5 + … + n.(n + 1).(n + 2). Chứng minh rằng: 4A + 1 là một số chính phương.
Ta có: n(n + 1)(n + 2) = n (n + 1)(n + 2). 4= n(n + 1)(n + 2).
= n(n + 1)(n + 2)(n + 3) - n(n + 1)(n + 2)(n - 1)
=> 4S =1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + n( + 1)(n + 2)(n + 3)
- n(n + 1)(n + 2)(n - 1) = n(n + 1)(n + 2)(n + 3)
=> 4S + 1 = n(n + 1)(n + 2)(n + 3) + 1
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n^2+3n) (n^2+3n+2) (*)
Đặt n^2 +3n=t thì (*) = t(t + 2) + 1 = t^2 + 2t + 1 = (t + 1)^2
= (n2 + 3n + 1)^2
Vì n N nên n^2 + 3n + 1 N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương hau 4S +1 là scp
A=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
suy ra 4A=1.2.3(4-0)+2.3.4(5-1)+...+n(n+1)(n+2)((n+3)-(n-1))
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+n(n+1)(n+2)(n+3)-(n-1).n(n+1)(n+2)
=n(n+1)(n+2)(n+3)
4A+1=n(n+1)(n+2)(n+3)+1=n^4+6.n^3+11.n^2+6n+1=(n2+3n+1)^2
Vậy Chứng minh rằng: 4A + 1 là một số chính phương.
Ta có: k(k + 1)(k + 2) = k (k + 1)(k + 2). 4= k(k + 1)(k + 2).
= k(k + 1)(k + 2)(k + 3) - k(k + 1)(k + 2)(k - 1)
=> 4S =1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + . . . + k(k + 1)(k + 2)(k + 3)
- k(k + 1)(k + 2)(k - 1) = k(k + 1)(k + 2)(k + 3)
=> 4S + 1 = k(k + 1)(k + 2)(k + 3) + 1
4S+1=k(k + 1)(k + 2)(k + 3) + 1 = k . ( k + 3)(k + 1)(k + 2) + 1
= (k2+3k)(k2+3n+2)+1 (*)
Đặt k2+3k=t thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (k2 + 3k + 1)2
Vậy 4A+1 là số chính phương.
Cho s = 1.2.3 + 2.3.4 + 3.4.5 + ...... + 49.50.51.Tìm n nhỏ nhất để 4S + n là số chính phương
Cho S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 49.50.51
4S = 1.2.3.4 +2.3.4.4+3.4.5.4+....+49.50.51.4
=2.3.4.(1+4)+3.4.5.4+....+49.50.51.4
=3.4.5.(2+4)+......+49.50.51.4
=.....
=49.50.51.52
= 2.2.2.3.5.5.7.7.13.17
= 6497400
Mà V649740 = 2548.999804
=> 4S + n = 2549^2
=> 6497400 + n = 6497401
=> n = 6497401 - 6497400
=> n = 1
Vạy: n = 1 (thấy đúng thì !)
S=1.2.3+2.3.4+3.4.5+....+49.50.51.tìm n để 4S+n là số chính phương .vậy n = ?
Cho S=1.2.3+2.3.4+3.4.5+...+49.50.51, tìm số tự nhiên n nhỏ nhất sao cho 4S+n là số chính phương.
Cho S1=1.2.3
S2=2.3.4
S3=3.4.5
...
Sn=n(n+1)(n+2)
S=S1+S2+S3+...+Sn
Chứng minh:4S+1 là số chính phương
Bài 4:
a) Chứng minh các công thức sau:
A = 1.2.3+2.3.4+3.4.5+...+(n-2)(n-1)n = (n−2).(n−1).n.(n+1):
4
b) Áp dụng tính tổng sau: G = 1.2.3 + 2.3.4 + 3.4.5 +...+ 2021.2022.2023
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
cau a thi sao ha ban ?
ok thanks ban nhe
S=1.2.3+2.3.4+3.4.5+...+49.50.51.Tìm số tn n nhỏ nhất để4S+n là số chính phương