(2/3)^3 .3 (-3/4)^2 . (-1)2003 // (2/5)^2. (-5/12)^3
(2/3)^3.(-3/4)^2.(-1)^2003/(2/5)^2.(-5/12)^3
\(\frac{\frac{2^3}{3^3}.\frac{\left(-3\right)^2}{4^2}.\left(-1\right)}{\frac{2^2}{5^2}.\frac{\left(-5\right)^3}{12^3}}=\frac{\frac{8}{27}.\frac{9}{16}.\left(-1\right)}{\frac{4}{25}.\frac{-125}{1728}}=\frac{\frac{-72}{432}}{\frac{-500}{43200}}=\frac{\frac{-1}{6}}{\frac{-5}{432}}=\frac{-1}{6}.\frac{432}{-5}=14,4\)
Tính giá trị của các biểu thức sau 1) \(A=1+2+2^2+...+2^{2015}\) 2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\) 3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\) 4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\) 5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\) 6) Cho 13+23+...+103=3025 Tính S= 23+43+63+...+203
Thực hiện phép tính: \(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}\)
thực hiện phép tính \(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}\)
\(\frac{\left(\frac{2}{3}\right)^3.\left(\frac{-3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2.\left(\frac{-5}{12}\right)^3}\)=\(\frac{\frac{8}{27}.\frac{9}{16}.-1}{\frac{4}{25}.\frac{-125}{1728}}\)=\(\frac{\frac{-1}{6}}{-\frac{5}{432}}\)=\(\frac{-1}{6}:\frac{-5}{432}=\frac{-1}{6}.-\frac{432}{5}=\frac{72}{5}\)
Bài này dễ mà bn
BT
a,,A=48+|48-174|+(-74)
b,,B=1-2+3-4+...+2009-2010
c,,C=0-2+4-6+...+2010-2012
d,,D=13-12+11+10-9+8-7-6+5-4+3+2-1
e,,E=1-2-3+4+5-6-7+8+...+2001-2002-2003+2004
f,,F=1+2-3-4+5-6-7+8+...+2002-2003-2004+2005+2006
Tinh hợp lý các biểu thức sau:
F=1-2+3-4+....+2009+2010
G=0-2+4-6+...+2010-2010
H=13-12+11+10-9+8-7-6+5-4-3+2-1
I=1-2-3+4+5-6-7-8+9...+2001-2002-2003+2004+2005+2006
J=1+2-3-4+6+6-7-8+9+...+2002-2003-2004+2005+2006
\(\frac{\left(\frac{2}{3}\right)^3.\left(-\frac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2.\left(-\frac{5}{12}\right)^3}\)
Ghi rõ cách làm
Giải các phương trình sau :
a. 3x + (2x/3) - 3 = (5/2)x - 2
b. [3(2x + 1)/4] - [(5x + 3)/6] + [(x + 1)/3] = x + 7/12
c. (3x/x - 3) - (x - 3)/(x + 3) = 2
d. [(x + 10)/2003] + [(x + 6)/2007] + [(x + 12)/2011] + 3 = 0
e. 4(x + 5) - 3 |2x - 1| = 10
f. |x + 4| - 2|x - 1| = 5x
=) vào ngay quả bảng phá dấu GTTĐ, cay thế :<
a, \(3x+\frac{2x}{3}-3=\frac{5}{2}x-2\Leftrightarrow\frac{18x+4x-18}{6}=\frac{15x-12}{6}\)
\(\Rightarrow22x-18=15x-12\Leftrightarrow7x=6\Leftrightarrow x=\frac{6}{7}\)
Vậy pt có nghiệm x = 6/7
b, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)
\(\Leftrightarrow\frac{9\left(2x+1\right)-2\left(5x+3\right)+4\left(x+1\right)}{12}=\frac{x+7}{12}\)
\(\Rightarrow18x+9-10x-6+4x+4=x+7\)
\(\Leftrightarrow12x+7=x+7\Leftrightarrow11x=0\Leftrightarrow x=0\)
Vậy pt có nghiệm là x = 0
c, \(\frac{3x}{x-3}-\frac{x-3}{x+3}=2\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{3x\left(x+3\right)-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow3x^2+9x-x^2+6x-9=2\left(x^2-9\right)\)
\(\Leftrightarrow2x^2+15x-9=2x^2-18\Leftrightarrow15x+9=0\Leftrightarrow x=-\frac{9}{15}=-\frac{3}{5}\)
Vậy pt có nghiệm là x = -3/5
d, Sửa đề : \(\frac{x+10}{2003}+\frac{x+6}{2007}+\frac{x+2}{2011}+3=0\)
\(\Leftrightarrow\frac{x+10}{2003}+1+\frac{x+6}{2007}+1+\frac{x+2}{2011}+1=0\)
\(\Leftrightarrow\frac{x+2013}{2003}+\frac{x+2013}{2007}+\frac{x+2013}{2011}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\frac{1}{2003}+\frac{1}{2007}+\frac{1}{2011}\ne0\right)=0\Leftrightarrow x=-2013\)
Vậy pt có nghiệm là x = -2013
e, \(4\left(x+5\right)-3\left|2x-1\right|=10\)
\(\Leftrightarrow4x+20-3\left|2x-1\right|=10\Leftrightarrow-3\left|2x-1\right|=-10-4x\)
\(\Leftrightarrow\left|2x-1\right|=\frac{10+4x}{3}\)
ĐK : \(\frac{10+4x}{3}\ge0\Leftrightarrow10+4x\ge0\Leftrightarrow x\ge-\frac{10}{4}=-\frac{5}{2}\)
TH1 : \(2x-1=\frac{10+4x}{3}\Rightarrow6x-3=10+4x\Leftrightarrow2x=13\Leftrightarrow x=\frac{13}{2}\)( tm )
TH2 : \(2x-1=\frac{-10-4x}{3}\Rightarrow6x-3=-10-4x\Leftrightarrow10x=-7\Leftrightarrow x=-\frac{7}{10}\)( tm )
f, để mình xem lại đã, quên cách phá GTTĐ rồi :v :>
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203