Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Penta Lê
Xem chi tiết
Đinh Thị Hải Anh
Xem chi tiết
Hoàng Vũ Trần
Xem chi tiết
Phùng Thế Hoàng
30 tháng 1 2016 lúc 22:20

Trong N có các Ư(50) là : {1;2;5;10;25;50}

Các số tự nhiên khác 0 khi chia cho 50 có 50 khả năng dư.

Nếu trong 27 số tự nhiên đó có 2 số cùng dư khi chia cho 50,vậy hiệu 2 số này chia hết cho 50(Bài toán được chứng minh)

Nếu trong 27 số tự nhiên không có 2 số nào có cùng số dư khi chia cho 50 =>ta có ít nhất  48 năng dư khi chia cho 50(loại ít nhất 2 số 0 và 25)

Ta chia 48 khả năng dư thành 24 nhóm : (1;49);(2;48);....;(24;26)

Vì có 27 số mà có 24 nhóm  => Theo nguyên lí dirichlet sẽ có ít nhất 2 số có cùng một nhóm và đúng bằng 50 chia hết cho 50(bài toán được chứng minh)

Vậy trong  27 stn tuỳ ý luôn tồn tại 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 50

 
Nguyễn Thảo Chi
Xem chi tiết
Nguyễn Tuấn Minh
5 tháng 4 2016 lúc 17:55

Bài 1

6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp

Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn

Bài 2

5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha

Ngô Thu Hiền
Xem chi tiết
Golden Darkness
31 tháng 1 2017 lúc 22:04

Dễ thấy là trong các số từ 1 tới 899 có số mà tổng các chữ số của nó bằng s, với 1 ≤ s ≤ 26. Thật thế, vd. các số 1, ..., 9, 19, 29, 39, ..., 99, 199, 299, ..., 899 có tổng các chữ số lần lượt là 1, 2, ..., 26.
Gọi s(n) là tổng các chữ số của n.
Trong 1900 số tự nhiên liên tiếp k+1, ..., k+1900 có ít nhất 1 số chia hết cho 1000. Gọi số nhỏ nhất trong 1900 số đó mà chia hết cho 1000 là a*1000 ta có a*1000 + 899 ≤ k + 1900. Nếu s(a*1000) chia hết cho 27 ta có đpcm Giả sử s(a*1000) chia cho 27 dư r với 1≤ r ≤ 26, tức 1 ≤ 27 - r ≤ 26
Ta chọn số b mà 1 ≤ b ≤ 899 sao cho s(b) = 27 - r
=> s(a*1000 + b) = s(a*1000) + s(b) = (27n + r) + (27 - r) = 27(n + 1) chia hết cho 27 (đpcm)

Lina Nguyễn
Xem chi tiết
Nguyễn Thị Thúy
10 tháng 4 2016 lúc 22:54

trong phép chia 1 số cho n có n số dư từ 0 đên n-1. có n+1 số NT chia cho n, theo nguyên lí Dirichlet, có ít nhất 2 số trong n+1 số này chia cho n có cùng 1 số dư nên hiệu của 2 số này chia hết cho n

Lina Nguyễn
3 tháng 4 2016 lúc 20:31

Bn nào thông minh xinh đẹp, đẹp trai dễ thương, học giỏi, chăm chỉ giải cho mk bài này mk k cho !

Trần Hương Giang
3 tháng 4 2016 lúc 20:51

chào P Anh , Giang đấy

Ngô Thu Hiền
Xem chi tiết
Trần Quỳnh Mai
10 tháng 11 2016 lúc 22:14

Nguyên lí đi - rich - lê

Vũ quang tùng
Xem chi tiết
Nguyễn Bá Hoàng Minh
Xem chi tiết
alibaba nguyễn
6 tháng 9 2017 lúc 10:19

Ta biết rằng số nguyên tố lớn hơn 3 thì có 1 trong 2 dạng sau: \(6k+1;6k-1\)

Xét số nguyên tố có dạng: \(6k+1\)

Nếu k chẵn thì \(6k+1\)chia cho 12 dư 1.

Nếu k lẻ thì \(6k+1\)chia cho 12 dư 7.

Xét số nguyên tố dạng \(6k-1\)

Nếu k chẵn thì \(6k-1\)chia cho 12 dư 11.

Nếu k lẻ thì \(6k-1\)chia cho 12 dư 5.

\(\Rightarrow\)Số nguyên tố khi chia cho 12 thì có các số dư như sau: \(1;2;3;5;7;11\)

Từ đây ta thấy rằng trong 7 số nguyên tố bất kỳ sẽ có ít nhất 2 số có cùng số dư khi chi cho 12. Nên hiệu hai số đó sẽ chia hết cho 12.