Cho tam giác AGD cân tại D. Gọi P là trung điểm của cạnh AG
a. Chứng minh DP là đường trung trực của AG
B. Từ P vẽ PH⊥AD tại H và vẽ PC⊥GD tại C. Chứng minh HC//AG
C. Cho biết \(\frac{DP}{AG}=\frac{2}{3}\)
Tính tỉ số \(\frac{DA}{DP}\)
Cho △AGD cân tại D. Gọi P là trung điểm của cạnh AG.
A/. Chứng minh DP là đường trung trực của AG
B/. Từ P vẽ PH ⊥ AD tại H và vẽ PC ⊥ GD tại C. Chứng minh HC // AG.
C/. Cho biết DP phần AG = 2 phần 3. Tính tỉ số DA phần DP = ... phần ...
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt cạnh BC tại D. a) Chứng minh ΔABD = ΔACD. b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của tam giác ABC. c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân. d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD.
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=BA.Qua D vẽ đường vuông góc với BC cắt AC tại E, cắt BA tại F.
a) Chứng minh tam giác ABE = tam giác DBE
b)Chứng minh BE là đường trung trực của đoạn thẳng AD
c) Chứng minh tam giác BCF cân
d) Gọi H là trung điểm của đoạn thẳng CF. Chứng minh B;E;H thẳng hàng
ma kết gái với dễ thương , còn trai ko phải
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt
cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng
tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt
cạnh AC tại E. Chứng minh ΔDEC cân.
d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD
Cho tam giác ABC cân tại A, có góc BAC nhọn. Qua A vẽ tia phân giác của góc BAC cắt
cạnh BC tại D.
a) Chứng minh ΔABD = ΔACD.
b) Vẽ đường trung tuyến CF của tam giác ABC cắt cạnh AD tại G. Chứng minh G là trọng
tâm của tam giác ABC.
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt
cạnh AC tại E. Chứng minh ΔDEC cân.
d) Chứng minh ba điểm B, G, E thẳng hàng và AD > BD
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD=BA. Qua D vẽ đường vuông góc với BC cắt AC tại E,cắt BA tại F
a.) Chứng minh tam giác ABE = tam giác DBE
b.) Chứng minh BE là đường trung trực của đoạn thẳng AD
c.) Chứng minh tam giác BCF cân
d.) Gọi H là trung điểm của CF . Chứng minh B,E,H thẳng hàng
a) ΔABE = ΔDBE.
Xét hai tam giác vuông ABE và DBE có:
BA = BD (gt)
BE là cạnh chung
Do đó: ΔABE = ΔDBE (cạnh huyền - cạnh góc vuông)
b) BE là đường trung trực của AD.
Gọi giao điểm của AD và BE là I .
Vì ΔABE = ΔDBE (câu a) ⇒ ∠B1 = ∠B2 ( hai góc tương ứng)
Xét ΔABI và ΔDBI có:
BA = BD (gt)
∠B1 = ∠B2 (cmt)
BI : cạnh chung.
Do đó: ΔABI = ΔDBI (c - g - c)
⇒ AI = DI (hai cạnh tương ứng) (1)
∠I1 = ∠I2 (hai góc tương ứng) mà ∠I1 + ∠I2 = 180°
⇒ ∠I1 = ∠I2 = 180° : 2 = 90°
Hay BE ⊥ AD (2)
Từ (1) và (2) suy ra: BE là đường trung trực của AD
c) ΔBCF cân.
Vì ΔABE = ΔDBE (câu a) ⇒ AE = DE (hai cạnh tương ứng)
Xét hai tam giác vuông AEF và DEC có:
AE = DE (cmt)
∠E1 = ∠E2 (đối đỉnh)
Do đó: ΔAEF = ΔDEC (cạnh góc vuông - góc nhọn kề)
⇒ AF = CD (hai cạnh tương ứng)
Ta có: BF = AB + AF và BC = BD + DC (3)
Mà: BA = BD (gt) và AF = DC (cmt) (4)
Từ (3) và (4) suy ra: BF = BC
Hay ΔBFC cân tại B.
d) B, E, H thẳng hàng.
Vì ∠B1 = ∠B2 (câu b)
Nên BE là phân giác của góc B (5)
Xét ΔFBH và ΔCBH có:
BF = BC (câu c)
FH = HC (trung điểm H của BC)
BH : chung
Do đó: ΔFBH = ΔCBH (c - c - c)
⇒ ∠FBH = ∠CBH (hai góc tương ứng)
⇒ BH là phân giác của góc B (6)
Từ (5) và (6) suy ra: B, E, H thẳng hàng.
cho tam giác abc cân tại a(góc a<90) vẽ tia phân giác ad của góc a(d thuộc bc) chứng minh tam giác abd= tam giác acd vẽ dường trung tuyến cf của tam giác abc cắt ad tại g chứng minh g là trọng tâm của tam giác abc gọi h là trung điểm của cạnh dc qua h vẽ đường thẳng vuông góc với cạnh dc cắt cạnh ac tại e chứng minh tam giác dec cân chứng minh ba điểm b,g,e thẳng hàng
Bài 5:
Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BD = BA. Qua D vẽ đường vuông góc với BC cắt AC tại E, cắt BA tại F.
a) CM: tam giác ABE = tam giác DBE
b) Chứng minh BE là đường trung trực của đoạn thẳng AD
c) Chứng minh tam giác BCF cân
d) Gọi H là trung điểm của đoạn thẳng CF. Chứng minh B;E;H thẳng hàng.
Cho tam giác ABC cân tại A vẽ hai đường trung tuyến BM
và CN cắt nhau tại G
Chứng minh BM C N
Chứng minh AG là tia phân giác của góc BAC
Chứng minh MN song song BC
Gọi H là giao điểm của AG và BC chứng minhAH vuông góc với BC