cho 2 đg tròn (o1), (o2) cắt nhau tại A,B kéo dài AB về phía B lấy điiểm M kẻ các tiếp tuyến ME ,MF của đường tròn o1 BE BF cắt đg trong o2 ở P,Q gọi I là giap EF PQ cme i là trung điểm PQ
Cho hai đường tròn O1 và O2 cắt nhau tại 2 điểm A và B. Trêb tia đối tia BA lấy M, từ M kẻ 2 tiếp tuyến ME và MF với đường tròn O1 ( F nằm phía O2 với bờ là đường thẳng AB) . BE và BF cắt đường tròn O2 tại N và Q. Gọi I là giao điểm của NQ và EF. CMR:
a, t/g AFIQ nội tiếp
b, EA.EF=EB.FA
c, IN=IQ
Cho nửa đường tròn (O) đường kính AB. Lấy M là điểm tuỳ ý trên nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB (H ∈ AB). Trên cùng nửa mặt phang bờ AB chứa nửa đường tròn (O) vẽ hai nửa đường tròn tâm O 1 , đường kính AH và tâm O 2 , đường kính BH. Đoạn MA và MB cắt hai nửa đường tròn ( O 1 ) và ( O 2 ) lần lượt tại P và Q. Chứng minh:
a, MH = PQ
b, Các tam giác MPQ và MBA đồng dạng
c, PQ là tiếp tuyến chung của hai đường tròn ( O 1 ) và ( O 2 )
a, MPHQ là hình chữ nhật => MH = PQ
b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA
c, P M H ^ = M B H ^ => P Q H ^ = O 2 Q B ^ => PQ là tiếp tuyến của O 2
Tương tự PQ cũng là tiếp tuyến ( O 1 )
1 cung tròn BC nằm trong tam giác BAC và tiếp xúc với AB, AC ở B, C. Lấy M thuộc cung BC; kẻ MI, MH, MK vuông góc với BC, CA, AB. MB cắt IK tại P. MC cắt IH tại Q.
a. Cm: BIMK, CIMH nội tiếp trong đường tròn
b. Cm: MI^2 = MK.MH
c. Tia đối của tia MI là tia phân giác của góc HMK
d. Tứ giác MPIQ nội tiếp và PQ // BC
e. Gọi (O1) là đường tròn qua M, P, K; (O2) qua M, Q, H. Gọi D là trung điểm của BC. (O1) cắt (O2) tại điểm thứ hai là N. Cm: M, N, D thẳng hàng
cho nửa đường tròn tâm (O) đường kính EF. Vẽ tia Ot vuông góc với EF. Ot cắt nửa đường tròn tại I. Lấy điểm A trên tia Ot sao cho IA=IO. VẼ hai tiếp tuyến AP và AQ với nửa dường tròn cắt EF lần lượt tại B,C.Từ điểm S bất kỳ trên cung PQ, vẽ tiếp tuyến với nửa đg tròn; tiếp tuyến này cắt AB,AC tại H,K. Gọi M,N lần lượt là giao diểm của PQ với OH,OK.Chứng minh OMKQ nội tiếp
Cho hai đường tròn \(\left(O_1\right),\left(O_2\right)\)cắt nhau tại A và B, kéo dài AB về phía B lấy điểm M, từ M kẻ tiếp tuyến ME và MF với \(\left(O_1\right)\)( E và F là hai tiếp điểm, F cùng phía với đường tròn \(\left(O_2\right)\)đối với AB. ĐƯờng thẳng BE và BF cắt \(\left(O_2\right)\) tại P, Q. PQ và EF cắt nhau tại I. CMR:
a) \(\frac{FB}{FA}=\frac{EB}{EA}\) b) AFIQ là tứ giác nội tiếp
c) \(\Delta FBA~\Delta IPA\) d) QI=IP
cho nửa đường tròn tâm (O) đường kính BC va điểm A trên nửa đường tròn (A khác B và C). kẻ AH vuông góc với BC. Trên cùng một nửa mặt phẳng bờ BC chứa điểm A, vẽ 2 nửa đường tròn (O1)và (O2) đường kính BH và CH chúng lần lượt cắt AB,AC ở E và F.
a) CM: AE.AB=AF.AC ;
b) CM EF là tiếp tuyến chung của hai đường tròn (O1) và (O2) ;
c) Gọi I và K lần lượt là các điểm đối xứng của H qua AB và AC. CM 3 điểm I, A, K thẳng hàng.
d) gọi M là giao điểm của IK với tiếp tuyến kẻ từ B của đường tròn tâm (O). CM MC, AH và EF đồng quy
cho hai đường tròn tâm O1 và O2 tiếp xúc ngoài tại E. Vẽ hai tiếp tuyến chung ngoài AB và CD với A và D là hai tiếp điểm thuộc (O1); B và C là hai tiếp điểm thuộc (O2). Chứng minh:
a, Tứ giác ABCD là hình thang cân (gợi ý CD và BA kéo dài cắt nhau ở F)
b, BC+AD=AB+CD (gợi ý : về tiếp tuyến chung trong tại E cắt AB và CD ở M và N
(trình bày cụ thể ra cho mình nhé)
Cho tam giác ABC vuông cân ở A trên cạnh BC lấy điểm M.Gọi (O1) là đường tròn tâm O1 qua M và tiếp xúc với AB tại B gọi (O2) là đường tròn tâm O2 qua M và Tiếp xúc với AC tại C.Đường tròn (O1) và(O2) cắt nhau tại D
1.Chứng minh:tam giác BCD là tam giác vuông
2.C/m O1D là tiếp tuyến của (O2)
Cho đường tròn (O; R) đường kính AB, điểm M nằm trên đoạn OB ( M khác O và B), từ M kẻ đường thẳng vuông góc với AB cắt (O) tại hai điểm C và E. Gọi F là hình chiếu củ C trên AE và I là hình chiếu của M lên CF. Đường thẳng AI cắt (O) tại điểm thứ hai là H.
a, Tiếp tuyến tại C của (O) cắt đường thẳng AB tại D. Gọi (O1) là đường tròn ngoại tiếp tam giác CHD. Chứng minh BD là tiếp tuyến (O1).
b, Gọi O2 là tâm đường tròn ngoại tiếp tam giác MHD. Biết OM= (R√2)/2, tính diện tích tam giác OO1O2 theo R.
a) Ta có \(IM//AE\)suy ra \(\widehat{MIH}=\widehat{EAH}\). Mà \(\widehat{EAH}=\widehat{ECH}\)nên \(\widehat{MIH}=\widehat{MCH}\). Suy ra tứ giác CIMH nội tiếp.
Dễ dàng chỉ ra được ED là tiếp tuyến của \(\left(O\right)\)suy ra \(\widehat{HED}=\widehat{HCE}\)\(\left(1\right)\)
Do tứ giác CIMH nội tiếp nên \(\widehat{CHM}=90^0\)suy ra \(\widehat{HCM}+\widehat{HMC}=90^0\)
Mà \(\widehat{HMD}+\widehat{HMC}=90^0\)nên \(\widehat{HCM}=\widehat{HMD}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra \(\widehat{HED}=\widehat{HMD}\)nên tứ giác EMHD nội tiếp. Do đó \(\widehat{HDM}=\widehat{HEM}\)mà \(\widehat{HEM}=\widehat{HCD}\)nên \(\widehat{HDM}=\widehat{HCD}\)
Từ đó chứng minh được BD là tiếp tuyến của \(\left(O_1\right)\)
b) Sử dụng tính chất đường nối tâm vuông góc với dây chung ta có: \(OO_2\perp HE,O_2O_1\perp HD\)và do \(EH\perp HD\)suy ra \(OO_2\perp O_2O_1\)
Dễ thấy \(\widehat{COM}=45^0\)suy ra \(\widehat{CAE}=45^0\)nên \(\widehat{O_2OO_1}=45^0\). \(\Delta O_2OO_1\)vuông cân tại \(O_2\)
Tứ giác OCDE là hình vuông cạnh R và \(O_2\) là trung điểm của DE nên ta tính được \(O_2O^2=\frac{5R^2}{4}\)
.Vậy diện tích \(\Delta O_2OO_1\) là\(\frac{5R^2}{8}\)