Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nobita Kun
Xem chi tiết
Nguyễn Quốc Khánh
21 tháng 12 2015 lúc 22:13

Gọi 4 số tự nhiên liên tiếp đó là a-1;a;a+1;a+2

Theo đề ra ta có

\(a\left(a-1\right)\left(a+1\right)\left(a+2\right)+1=\left[a\left(a+1\right)\right]\left[\left(a-1\right)\left(a+2\right)\right]+1\)

\(=\left(a^2+a\right)\left(a^2+a-2\right)+1\)

Đặt \(a^2+a-1=x\)

=>\(\left(x-1\right)\left(x+1\right)+1=x^2-1+1=x^2\)là số chính phương 

Vậy ...

 

Nobita Kun
Xem chi tiết
Nguyễn Nhật Minh
25 tháng 12 2015 lúc 10:16

a+(a+1(+(a+2(+(a+3) +1 = 4a+7 

với a =5 => 4.5 + 7 =27 không là số chính phương

=> đề sai

Hoàng Đức Minh
Xem chi tiết
Hiền Thương
2 tháng 7 2021 lúc 19:50

2. 

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 =(  x2 + 3x ) (x2 + 2x + x +2 )  +1 

= (  x2 + 3x ) (x2 +3x + 2 ) +1  (*)

Đặt t = x2 + 3x  thì  (* ) =  t ( t+2 ) + 1=  t2 + 2t +1  =  (t+1) = (x2 + 3x + 1 )2

=>  x (x+1) (x+2 ) (x+3 ) +1  là số chính phương 

hay tích 4 số tự nhiên liên tiếp  cộng  1 là số chính phương 

Khách vãng lai đã xóa
Lê Thị Duyên
23 tháng 11 lúc 21:45

Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x

∈ N)

 

 Ta có : x (x+1) (x+2 ) (x+3 ) +1 

 

 =( x2 + 3x ) (x2 + 2x + x +2 ) +1 

 

= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)

 

Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2

 

=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương 

 

hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

Nguyễn Thanh Hà
Xem chi tiết
Cure Beauty
Xem chi tiết
Cure Beauty
9 tháng 2 2017 lúc 20:46

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Cure Beauty
9 tháng 2 2017 lúc 20:46

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Cure Beauty
9 tháng 2 2017 lúc 20:46

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.

Dinh Viet Anh
Xem chi tiết
Nguyễn Quốc Khánh
14 tháng 12 2015 lúc 21:44

Gọi 4 số tự nhiên liên tiếp là n-1;n;n+1;n+2(n thuộc N*)

Theo đề ra ta có

\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1=\left(n\left(n+1\right)\right).\left(\left(n-1\right)\left(n+2\right)\right)+1\)

\(=\left(n^2+n\right)\left(n^2+n-2\right)+1\)

Đặt \(n^2+n-1=a\)

=>(a-1)(a+1)+1=a^2-1+1=a^2 là số chính phương

Tick nha

Trần Khánh Châu
Xem chi tiết
Nguyễn Việt Hoàng
17 tháng 10 2019 lúc 21:12

Gọi 4 số tự nhiên liên tiếp là n , n + 1 , n + 2 , n + 3 , n + 4 ( \(n\inℕ\)

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\) 

Giả sử A là một số chính phương .

Vì A là đa thức bậc 4 với hệ số bậc cao nhất là 1 nên ta có : 

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+an+b\right)^2\)

\(\Rightarrow n^4+6n^3+11n^2+6n+1=n^4+2an^3+\left(a^2+2b\right)n^2+2abn+b^2\)

Đồng nhất 2 vế ta được :

\(\hept{\begin{cases}2a=6;a^2+2b=11\\2ab=6;b^2=1\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}\)

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)=\left(n^2+3n+1\right)^2\forall n\). Ta có điều phải chứng minh.

Cậu Bé Ngu Ngơ
17 tháng 10 2019 lúc 21:19

QTV sai r nhé :))

Gọi 4 stn lt là \(a,a+1,a+2,a+3\left(a\inℕ\right)\)

Xét \(A=a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)

\(=a\left(a+3\right)\left(a+1\right)\left(a+2\right)+1\)

\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

\(=\left(a^2+3a+1\right)^2-1+1=\left(a^2+3a+1\right)^2\)(ĐPCM)

Nguyễn Việt Hoàng
17 tháng 10 2019 lúc 21:21

Ok để tí mình hỏi lại cô !

Nguyễn Thị Phương Hoa
Xem chi tiết
Cô Bé Ngốc Nghếch
20 tháng 3 2016 lúc 16:47

Gọi 4 số tự nhiên, liên tiêp đó là n, n + 1, n+ 2, n + 3 (n ∈ N). Ta có

n(n + 1)(n + 2)(n + 3) + 1 = n.(n + 3(n + 1)(n + 2) + 1

= (n2 + 3n)( n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t( t + 2 ) + 1 = t2 + 2t + 1 = (t + 1)2 = (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương.:))

thu mai
Xem chi tiết
Hoàng Lê Bảo Ngọc
17 tháng 6 2016 lúc 19:27

Goi 4 số tự nhiên liên tiếp lần lượt là x, x+1, x+2, x+3 (\(x\in N\))

Ta sẽ chứng minh \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)là một số chính phương.

Ta có : \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1=\left(x^2+3x\right)\left[\left(x^2+3x\right)+2\right]+1\)

\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)là một số chính phương.

Vậy ta có điều phải chứng minh.