Giai phuong trinh
1/2(x+1)+1/4(x+3)=3-1/3(x+2)
giai phuong trinh 1/4(x+3)=3-1/2(x+1)-1/3(x+2)
giai nhung phuong trinh sau
3(x-2)+4=5x-2(x-1)
2(x-2)-3(1-2x)=5
\(3\left(x-2\right)+4=5x-2\left(x-1\right)\\ \Leftrightarrow3x-6+4=5x-2x+2\\ \Leftrightarrow0x=4\left(vôlý\right)\)
Vậy pt vô nghiệm
\(2\left(x-2\right)-3\left(1-2x\right)=5\\ \Leftrightarrow2x-4-3+6x=5\\ \Leftrightarrow8x=12\\ \Leftrightarrow x=\dfrac{3}{2}\)
giai phuong trinh :
(x^2+x+1)^2=3(x^4+x^2+1)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
giai phuong trinh (x-1)(x-4) + (x-3)(x-2)=2
x2 - 5x + 4 + x2 - 5x + 6 = 2
<=> 2x2 - 10x + 8 = 0
<=> x2 - 5x + 4 = 0
<=> x = 1 hoặc x = 4
X^2-4x-x+4+x^2-2x-3x+6=2 rút gọn và chuyển vế : 2x^2-10x+8=0 bấm máy tính ; x=4 và x=1
\(\left(x-1\right)\left(x-4\right)+\left(x-3\right)\left(x-2\right)=2\)
\(< =>x^2-4x-x+4+x^2-2x-3x+6=2\)
\(< =>2x^2-10x+10-2=0\)
\(< =>2x^2-10x+8=0\)
\(< =>x^2-5x+4=0\)
\(< =>x^2-x-4\left(x-1\right)=0\)
\(< =>\left(x-4\right)\left(x-1\right)=0\)
\(< =>\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
giai phuong trinh
x+1/x^2+x+1 - x-1/x^2-x+1 = 3/x(x^4+x^2+1)
Đề sai thì phải, bạn thêm dấu ngoặc vào đi. Như vậy dễ làm hơn.
giai phuong trinh x^2+2x+3=(x^2+x+1)(x^4+x^2+4)
giai cac phuong trinh sau
a, (3x-1)(4x-8)=0
b,(x-2)(1-3x)=0
c,(x-3)(x+4)-(x-3)(2x-1)=0
d,(x+1)(x+2)=2x(x+2)
a)(3x-1)(4x-8)=0
⇔3x-1=0 hoặc 4x-8=0
1.3x-1=0⇔3x=1⇔x=1/3
2.4x-8=0⇔4x=8⇔x=2
phương trình có 2 nghiệm:x=1/3 và x=2
b)(x-2)(1-3x)=0
⇔x-2=0 hoặc 1-3x=0
1.x-2=0⇔x=2
2.1-3x=0⇔-3x=1⇔x=-1/3
phương trình có 2 nghiệm:x=2 và x=-1/3
c)(x-3)(x+4)-(x-3)(2x-1)=0
⇔(x+4)(2x-1)=0
⇔x+4=0 hoặc 2x-1=0
1.x+4=0⇔x=-4
2.2x-1=0⇔2x=1⇔x=1/2
phương trình có hai nghiệm:x=-4 và x=1/2
d)(x+1)(x+2)=2x(x+2)
⇔(x+1)(x+2)-2x(x+2)=0
⇔2x(x+1)=0
⇔2x=0 hoặc x+1=0
1.2x=0⇔x=0
2.x+1=0⇔x=-1
phương trình có 2 nghiệm:x=0 và x=-1
giai phuong trinh sau
(x^2 -1) (x+2) (x-3) = (x-1) (x^2 -4 ) (x +5 )
- Ta có: \(\left(x^2-1\right).\left(x+2\right).\left(x-3\right)=\left(x-1\right).\left(x^2-4\right).\left(x+5\right)\)
\(\Leftrightarrow\left(x-1\right).\left(x+1\right).\left(x+2\right).\left(x-3\right)=\left(x-1\right).\left(x-2\right).\left(x+2\right).\left(x+5\right)\)
\(\Leftrightarrow\left(x-1\right).\left(x+1\right).\left(x+2\right).\left(x-3\right)-\left(x-1\right).\left(x-2\right).\left(x+2\right).\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left[\left(x+1\right).\left(x-3\right)-\left(x-2\right).\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left[\left(x^2-2x-3\right)-\left(x^2+3x-10\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(x+2\right).\left(-5x+7\right)=0\)
+ \(x-1=0\)\(\Leftrightarrow\)\(x=1\left(TM\right)\)
+ \(x+2=0\)\(\Leftrightarrow\)\(x=-2\left(TM\right)\)
+ \(-5x+7=0\)\(\Leftrightarrow\)\(-5x=-7\)\(\Leftrightarrow\)\(x=\frac{7}{5}\left(TM\right)\)
Vậy \(S=\left\{-2,1,\frac{7}{5}\right\}\)
giai he phuong trinh
x+2\x+1\y=4
1\x^2+1\xy+x\y=3