Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Soobin
Xem chi tiết
huy luong van
Xem chi tiết

      Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

         Bài 1: CM A = n2 + n + 6 ⋮ 2 

+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)

  Khi đó: A = (2k)2 + 2k + 6 

              A = 4k2 + 2k + 6

             A =  2.(2k2 + k + 3)  ⋮ 2

+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ

         Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn

            ⇒  A = n2 + n + 6 là số chẵn 

                A = n2 + n + 6 ⋮ 2

+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N

       

 

           

             

 

 

Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:

Bài 2: CM:  A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N

          Với n = 1 ta có: A = 13 + 1.5 

                A = 1 + 5 = 6 ⋮ 6

          Giả sử A đúng với n = k (k \(\in\) N)

          Khi đó ta có: A  = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)

          Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k  + 1

          Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6

Thật vậy với n = k + 1 ta có: 

       A = (k  + 1)3 + 5(k + 1) 

      A = (k  +1).(k  + 1)(k + 1) + 5.(k  +1)

     A = (k2 + k + k  +1).(k + 1) + 5k  +5

     A =  [k2 + (k + k) + 1].(k + 1) + 5k + 5

    A = [k2 + 2k + 1].(k + 1) + 5k + 5

   A = k3 + k2 + 2k2 + 2k + k  +1  +5k  +5

   A  = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5) 

    A = (k3 + 5k) + 3k2 + 3k + 6

   A = (k3 + 5k) + 3k(k +1) + 6

   k.(k  +1) là tích của hai số liên tiếp nên luôn chia hết cho 2

 ⇒ 3.k.(k + 1) ⋮ 6 (2)

     6 ⋮ 6 (3)

Kết hợp (1); (2) và (3) ta có:

    A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N

Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm) 

 

 

      

 

 

 

                  

           

          

 

                 

 

 

 

                           Bài 3: 

Đây là toán nâng cao chuyên đề tính chất chia hết của một tích, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:

                               Giải:

A = (n + 20132012).( n + 20122013)

TH1: Nếu n  là số chẵn ta có:

    2012 là số chẵn nên 20122013 là số chẵn suy ra n + 201213 là số chẵn. Mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số chẵn (1)

TH2: Nếu n là số lẻ ta có:

   2013 là số lẻ nên 20132012 là số lẻ khi đó ta có 

  n + 20132012 là số chẵn vì tổng của hai số lẻ là một số chẵn mà số chẵn thì luôn chia hết cho 2

Vậy A = (n + 20132012).(n + 20122013) ⋮ 2 \(\forall\) n là số lẻ (2)

Kết hợp (1) và (2) ta có:

A = (n + 20132012).(n + 20122013) ⋮ 2 ∀ n \(\in\) N

     

 

 

Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Tiến Đạt
12 tháng 7 2017 lúc 9:29

xét n(n+1)(4n+1)

Có (nn+n1)(4n+1)

(2n+n)(4n+1)=3n(4n+1)

Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3

xét3n(4n+1)

có 3n*4n+3n

=>n(3+3)4n

=>n6*4n=24n chia hết cho 2

Nguyễn Tiến Đạt
12 tháng 7 2017 lúc 9:34

mình làm ko biết đúng không 

nhung chac la se dung

thắng
14 tháng 5 2021 lúc 9:23

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Khách vãng lai đã xóa
ZzzthảozzZ
Xem chi tiết
ngonhuminh
25 tháng 11 2016 lúc 11:20

k 2 k kieu gi

a+4b chia het cho 13

=>a+4b=13k (k nguyen)

a=13k-4b

10.a=130k-40b

10.a+b=130k-39b=13(10k-3b)  chia het cho 13

5n+1 chia het cho 7=> 5n+1=7k

n=7z+4 

Phùng Thu Huệ
Xem chi tiết
Phan Ngọc Trâm
Xem chi tiết
Nguyễn Vũ Anh
Xem chi tiết
camilecorki
13 tháng 10 2017 lúc 7:11

Phản chứng :

giả sử n = 2 , => n5 - 1 = 25 - 1 = 31 ko chia hết cho 4 

Vậy điều cần chứng minh là sai

Nguyễn Vũ Anh
16 tháng 10 2017 lúc 19:48

mình cám ơn nhé
 

Tiểu thư cô đơn
Xem chi tiết
dark magidian
Xem chi tiết