Những câu hỏi liên quan
phượng hoàng tài năng
Xem chi tiết
Wakanda forever
Xem chi tiết
Nguyễn Anh Dũng An
18 tháng 11 2019 lúc 21:40

Bài 2:

\(\frac{1}{\sqrt[3]{81}}\cdot P=\frac{1}{\sqrt[3]{9\cdot9\cdot\left(a+2b\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(b+2c\right)}}+\frac{1}{\sqrt[3]{9\cdot9\cdot\left(c+2a\right)}}\)

\(\ge\frac{3}{a+2b+9+9}+\frac{3}{b+2c+9+9}+\frac{3}{c+2a+9+9}\ge3\left(\frac{9}{3a+3b+3c+54}\right)=\frac{1}{3}\)

\(\Rightarrow P\ge\sqrt[3]{3}\)

Dấu bằng xẩy ra khi a=b=c=3

Bình luận (0)
 Khách vãng lai đã xóa
Lê Tài Bảo Châu
18 tháng 11 2019 lúc 21:43

Bài 1: 

 \(ab+bc+ca=5abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=5\)

Theo bđt côsi-shaw ta luôn có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge\frac{25}{x+y+z+t+k}\)(x=y=z=t=k>0 ) (*)

\(\Leftrightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

Áp dụng bđt AM-GM ta có:

 \(\hept{\begin{cases}x+y+z+t+k\ge5\sqrt[5]{xyztk}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\ge5\sqrt[5]{\frac{1}{xyztk}}\end{cases}}\)

\(\Rightarrow\left(x+y+z+t+k\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\ge25\)

\(\Rightarrow\)(*) luôn đúng

Từ (*) \(\Rightarrow\frac{1}{25}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}+\frac{1}{k}\right)\le\frac{1}{x+y+z+t+k}\)

Ta có: \(P=\frac{1}{2a+2b+c}+\frac{1}{a+2b+2c}+\frac{1}{2a+b+2c}\)

Mà \(\frac{1}{2a+2b+c}=\frac{1}{a+a+b+b+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\frac{1}{a+2b+2c}=\frac{1}{a+b+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\frac{1}{2a+b+2c}=\frac{1}{a+a+b+c+c}\le\frac{1}{25}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\right)\)

\(\Rightarrow P\le\frac{1}{25}\left[5.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=1\)

\(\Rightarrow P\le1\left(đpcm\right)\)Dấu"="xảy ra khi a=b=c\(=\frac{3}{5}\)

      

Bình luận (0)
 Khách vãng lai đã xóa
Lê Tài Bảo Châu
18 tháng 11 2019 lúc 21:49

https://olm.vn/thanhvien/ankhunge

Làm sai rồi ạ

Bình luận (0)
 Khách vãng lai đã xóa
Phạm Văn Việt
Xem chi tiết
Thắng Nguyễn
25 tháng 3 2017 lúc 11:17

Ta có: \(a^2+b^2\ge2ab\forall a,b\Rightarrow\frac{1}{4-ab}\le\frac{2}{8-a^2-b^2}\)

Theo BĐT C-S: \(\frac{2}{8-a^2-b^2}\le\frac{1}{2}\left(\frac{1}{4-a^2}+\frac{1}{4-b^2}\right)\)

Do đó: \(\frac{1}{4-ab}+\frac{1}{4-bc}+\frac{1}{4-ca}\le\frac{1}{4-a^2}+\frac{1}{4-b^2}+\frac{1}{4-c^2}\)

Ta có đánh giá sau: \(\frac{1}{4-a^2}\le\frac{a^4+5}{18}\Leftrightarrow\left(a^2-1\right)^2\left(a^2-2\right)\le0\) (Đúng)

Thiết lập các BĐT tương tự rồi cộng theo vế ta có: 

\(\frac{1}{4-a^2}+\frac{1}{4-b^2}+\frac{1}{4-c^2}\le\frac{a^4+5}{18}+\frac{b^4+5}{18}+\frac{c^4+5}{18}=1\)(ĐPCM)

Đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (0)
Bá đạo sever là tao
25 tháng 3 2017 lúc 11:28

Cách khác dùng Schur như sau :)

BĐT cần chứng minh tương đương với:

\(16+3abc\left(a+b+c\right)\ge a^2b^2c^2+8\left(ab+bc+ca\right)\)

Mà \(1\ge a^2b^2c^2\). Mặt khác theo BĐT Schur ta có: 

\(\left(a^3+b^3+c^3+3abc\right)\left(a+b+c\right)\ge\)

\(\ge\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\left(a+b+c\right)\)

\(\Leftrightarrow3+3abc\left(a+b+c\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)+2abc\left(a+b+c\right)\)

\(=\left(ad+bc\right)^2+\left(bc+ca\right)^2+\left(ca+ab\right)^2\)

BĐT sẽ được c/m xong nếu ta chỉ ra: 

\(\left(ab+bc\right)^2+\left(bc+ca\right)^2+\left(ca+ab\right)^2+12\ge8\left(ab+bc+ac\right)\) 

Đúng theo BĐT Cô-si

Dấu đẳng thức xảy ra khi \(a=b=c=1\)

Bình luận (0)
Nguyễn Duy Long
Xem chi tiết
Witch Rose
20 tháng 8 2017 lúc 14:05

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

Bình luận (0)
Witch Rose
20 tháng 8 2017 lúc 14:19

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

Bình luận (0)
Thắng Nguyễn
20 tháng 8 2017 lúc 22:33

lười quá khỏi nghĩ đưa link

| Inequalities (ko dịch dc thì pm)

Bình luận (0)
Tran Anh Hung
Xem chi tiết
you know
Xem chi tiết
you know
29 tháng 7 2018 lúc 9:25

A\(\ge3\)

You know

Bình luận (0)
you know
29 tháng 7 2018 lúc 9:31

A\(\ge\)9

Bình luận (0)
you know
29 tháng 7 2018 lúc 10:23

Theo gt \(ab+bc+ca\le abc^{\left(3\right)}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)

\(\frac{9}{a+b+c}\le1\)

\(a+b+c\ge9^{\left(1\right)}\)

Mặt khác 

\(a^2+b^2+c^2\ge3\left(a+b+c\right)\)

\(a^2+b^2+c^2\ge9\cdot3=27^{\left(2\right)}\)

Vì a,b,c >0, áp dụng bất đẳng thức cô si ta có:

\(\frac{a^2b}{b+2a}+\frac{b\left(b+2a\right)}{9}\ge2\sqrt{\frac{a^2b}{b+2a}\cdot\frac{b\left(b+2a\right)}{9}}=\frac{2ab}{3}\)

CMTT

\(\frac{b^2c}{c+2b}+\frac{c\left(c+2b\right)}{9}\ge\frac{2bc}{3}\)

\(\frac{c^2a}{a+2c}+\frac{a\left(a+2c\right)}{9}\ge\frac{2ca}{3}\)

Cộng vế với vế a được :

\(A+\frac{a^2+b^2+c^2}{9}+\frac{2\left(ab+bc+ca\right)}{9}\ge\frac{2\left(ab+bc+ca\right)}{3}\)

\(A\ge\frac{4\left(ab+bc+ca\right)}{3}-\frac{a^2+b^2+c^2}{9}^{\left(#\right)}\)

Từ 1,2,3 và # ta có

\(A\ge\frac{4\cdot9}{3}-\frac{27}{9}=9\)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c=3\)

Vậy...

Bình luận (0)
Hoàng Trung Đức
Xem chi tiết
Long nguyen van
Xem chi tiết
Pham Quoc Cuong
3 tháng 9 2018 lúc 21:12

Đặt \(a=\frac{1}{x},b=\frac{1}{y},c=\frac{1}{z}\),xyz=1  

Cần CM: \(1+\frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}\ge\frac{6}{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}}\) 

\(\Leftrightarrow1+\frac{3}{xy+yz+zx}\ge\frac{6}{x+y+z}\) 

Thật vậy \(1+\frac{3}{xy+yz+zx}\ge1+\frac{9}{\left(x+y+z\right)^2}\ge2\sqrt{\frac{9}{x+y+z}}=\frac{6}{x+y+z}\)(đpcm) 

Dấu "=" xảy ra khi a=b=c=1

Bình luận (0)
Lê Tài Bảo Châu
Xem chi tiết
T.Ps
1 tháng 8 2019 lúc 9:20

#)Giải :

Ta có : \(\hept{\begin{cases}ax+by=c\\bx+cy=a\\cx+ay=b\end{cases}\Rightarrow ax+by+bx+cy+cx+ay=c+a+b}\)

\(\Rightarrow x\left(a+b+c\right)+y\left(a+c+b\right)=a+b+c\)

\(\Rightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)

\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)

\(\Rightarrow a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3\)

\(=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)

\(\Rightarrowđpcm\)

Bình luận (0)
alibaba nguyễn
1 tháng 8 2019 lúc 9:25

Bài giải thiếu trường hợp \(x+y-1=0\) rồi

Bình luận (0)
T.Ps
1 tháng 8 2019 lúc 9:29

#)Góp ý :

alibaba nguyễn hình như đề bài yêu cầu cm thì chỉ cần cm thui là đc chứ ???

Bình luận (0)