a)Vẽ tam giác đề ABC. Ở phía ngoài tam giác ABC vẽ tam giác ABD vuông cân tại C.
b) Tính góc BDA
Cho tam giác ABC vuông cân tại A ở phía ngoài tam giác ABC Vẽ tam giác đều ABD tính số đo các góc của tam giác bdc
Tam giác ABC có ^BAC= 90; ^ABC=^ACB=45
Tam giác ABD có ^ABC=^BAC=^ACB=60
=> Tam giác BDC có
^CBD=60-45=15
Cho tam giác vuông cân tại A. Vẽ tam giác đều ABD ở phía ngoài tam giác ABC . Tính số đo các góc của tam giác BDC
Cho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DE
Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ các tam giác ABD vuông cân tại A, vẽ tam giác ABD vuông cân tại A, vẽ tam giác ACE vuông cân tại E. CMR: Tứ giác BDEC là hình thang cân
Cho tam giác ABC vuông tại A vẽ tam giác đều ABD ở phía ngoài tam giác ABC .Tính số đo các góc của tam giác BDC
chiu roi
ban oi
tk nhe@@@@@@@@@@@!!
ai tk minh minh tk lai
Vẽ tam giác đều ABC . Ở phía ngoài tam giác ABC , vẽ tam giác ACD vuông cân tại C . Tính góc BAD ?
tam giác ABC đều => góc BAC =60 độ
tam giác ACD zuông cân ở C => góc CAD=45 độ
ta có góc BAD= góc BAC + góc CAD
=> góc BAD =60 độ +45 độ =105 độ
Ta có hình vẽ:
Ta có: \(\Delta ACD\) vuông cân tại C
\(\Rightarrow\widehat{CAD}=\widehat{CDA}=\frac{180^o-90^o}{2}=45^o\)
Lại có: \(\Delta ABC\)đều \(\Rightarrow\widehat{BAC}=\widehat{ABC}=\widehat{BCA}=60^o\)
\(\Rightarrow\widehat{BAD}=\widehat{BAC}+\widehat{CAD}\)
\(\Rightarrow\widehat{BAD}=60^o+45^o=105^o\)
Vậy \(\widehat{BAD}=105^o\)
Thank you
Cho tam giác ABC cân tại A có góc A = 108o,BC = a, AC = b. Vẽ phía ngoài tam giác ABC vẽ tam giác ABD cân tại A có góc BAD = 36o. Tính chu vi tam giác ABD theo a và b.
Các bạn giúp mình bài này với ạ!
Kẻ AH \(\perp\) BC.
Xét tam giác ABC cân tại A có: AH là đường cao (AH \(\perp\) BC).
=> AH là trung tuyến (Tính chất các đường trong tam giác cân).
=> H là trung điểm của BC. => BH = \(\dfrac{1}{2}\) BC. => BH = \(\dfrac{1}{2}\)a.
Tam giác ABC cân tại A (gt). => ^ABC = (180o - 108o) : 2 = 36o.
Mà ^BAD = 36o (gt).
=> ^ABC = ^BAD = 36o.
Mà 2 góc này ở vị trí so le trong.
=> AD // BC (dhnb).
Mà AH \(\perp\) BC (cách vẽ).
=> AH \(\perp\) AD. => ^DAH = 90o. => ^MAH = 90o.
Kẻ MH // DB; M \(\in\) AD.
Xét tứ giác DMHB có:
+ MH // DB (cách vẽ).
+ MD // HB (do AD // BC).
=> Tứ giác DMHB là hình bình hành (dhnb).
=> MH = DB và MD = BH (Tính chất hình bình hành).
Ta có: AD = MD + AM.
Mà AD = b (do AD = AC = b); MD = \(\dfrac{1}{2}\)a (do MD = BH = \(\dfrac{1}{2}\)a).
=> AM = b - \(\dfrac{1}{2}\)a.
Xét tam giác AHB vuông tại H có:
AB2 = AH2 + BH2 (Định lý Py ta go).
Thay: b2 = AH2 + ( \(\dfrac{1}{2}\)a)2.
<=> AH2 = b2 - \(\dfrac{1}{4}\)a2.
<=> AH = \(\sqrt{b^2-\dfrac{1}{2}a^2}\).
Xét tam giác MAH vuông tại A (^MAH = 90o) có:
\(MH^2=AM^2+AH^2\) (Định lý Py ta go).
Thay: MH2 = (b - \(\dfrac{1}{2}\)a)2 + (\(\sqrt{b^2-\dfrac{1}{2}a^2}\))2.
MH2 = b2 - ab + \(\dfrac{1}{4}\)a2 + b2 - \(\dfrac{1}{4}\)a2.
MH2 = 2b2 - ab.
MH = \(\sqrt{2b^2-ab}\).
Mà MH = BD (cmt).
=> BD = \(\sqrt{2b^2-ab}\).
Chu vi tam giác ABD: BD + AD + AB = \(\sqrt{2b^2-ab}\) + b + b = \(\sqrt{2b^2-ab}\) + 2b.
Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ tam giác ABD vuông cân tại A, vẽ tam giác ACE vuông cân tại E. Chứng minh rằng tứ giác BDEC là hình thang cân.
cho tam giác ABC vuông tại A. Vẽ phía ngoài tam giác ABC tam giác ABD vuông cân tại D, vẽ tam giác ACE vuông cân tại E
CM: BDEC là hình thang vuông