BÀI 1: Giải HPT sau theo tham số m: \(\hept{\begin{cases}mx-2y=-1\\2x+3y=1\end{cases}}\)
Cho hpt \(\hept{\begin{cases}mx+2y=1\\3x+\left(m+1\right)y=-1\end{cases}}\) với m là tham số
a Giải hpt với m =3
b Giải và biện luận hpt theo m
c Tìm gtri nguyên của m để hpt có nghiệm là số nguyên
Bài 1: Giải hpt
a) \(\hept{\begin{cases}2x+3y=5\\x-4y=1\end{cases}}\)
b) \(\hept{\begin{cases}x+y=-2\\-2x-3y=9\end{cases}}\)
\(a)\)\(\hept{\begin{cases}2x+3y=5\\x-4y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{5-3y}{2}\\x=1+4y\end{cases}\Leftrightarrow}5-3y=2+8y\Leftrightarrow y=\frac{3}{11}}\)
\(\Rightarrow\)\(x=1+4y=1+4.\frac{3}{11}=\frac{23}{11}\)
\(b)\)\(\hept{\begin{cases}x+y=-2\\-2x-3y=9\end{cases}\Leftrightarrow\hept{\begin{cases}-x=y+2\\-x=\frac{9+3y}{2}\end{cases}\Leftrightarrow}2y+4=9+3y\Leftrightarrow y=-5}\)
\(\Rightarrow\)\(x=-y-2=-\left(-5\right)-2=3\)
...
Tìm nghiệm của hệ phương trình theo m: \(\hept{\begin{cases}mx-2y=-1\\2x+3y=1\end{cases}}\)
\(\hept{\begin{cases}mx-2y=-1\\2x+3y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=1-3y\\mx-2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1-3y}{2}\\\frac{m-3my}{2}-\frac{4y}{2}=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1-3y}{2}\\m-3my-4y=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1-3y}{2}\\m-y\left(3m+4\right)=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1-3y}{2}\\y\left(3m+4\right)=m+2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1-3y}{2}\\y=\frac{m+2}{3m+4}\end{cases}}\)
vậy....
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
E MỚI HOK HỆ NÊN CHƯA GIẢI ĐC
A CHI NÀO GIỎI GIẢI KĨ GIÚP E
E SẼ TICK CHO
Định m nguyên để hpt sau có nghiệm duy nhất là nghiệm nguyên:
\(\hept{\begin{cases}mx+2y=m+1\\2x+my=2m-1\end{cases}}\)
GIẢI HPT
A,\(\hept{\begin{cases}3Y^3=Y^2+2X^2\\3X^3=X^2+2Y^2\end{cases}}\)
B,\(\hept{\begin{cases}X\sqrt{X}-8\sqrt{Y}=\sqrt{X}+Y\sqrt{Y}\\X-Y=5\end{cases}}\)
C,\(\hept{\begin{cases}X^2+Y^2+XY+2Y+X=2\\2X^2-Y^2-2Y-2=0\end{cases}}\)
D,\(\hept{\begin{cases}X^3+Y^3=2X^2Y^2\\2Y+X=3XY\end{cases}}\)
E,\(\hept{\begin{cases}X^4-X^3Y+X^2Y^2=1\\X^3Y-X^2+XY=-1\end{cases}}\)
A CHỊ NÀO GIỎI GIẢI KĨ GIÚP E VỚI
MAI E ĐI HOK RỒI
EM SẼ TIXKS CHO
Giải biện luận hpt:
\(\hept{\begin{cases}mx+2y=1\\3x+\left(m+1\right)y=-1\end{cases}}\)
Cộng hai vế lại với nhau:
Ta có;
mx + 2y+ 3x + (m+1)y =0
=> (m+3)(x+y)=0
Sau đó bạn tự giải tiếp.
giải hpt \(\hept{\begin{cases}2x-y=3\\x+3y=-2\end{cases}}\)
từ đó suy ra nghiệm của hpt \(\hept{\begin{cases}\frac{2}{\sqrt{m}}-\frac{1}{n+1}=3\\\frac{1}{\sqrt{m}}+\frac{3}{n+1}=-2\end{cases}}\)với m,n là ẩn số
c, Ap dung cong thuc sau
Dien h tam giac deu canh a = \(\frac{a^2\sqrt{3}}{4}\) (bn tu chung minh )
sau do tinh canh tam giac ABC theo R se duoc \(AB=\frac{\sqrt{3}}{2}R\) thay vao cong thuc tren la ra
d, ban tu ve hinh nha
Ta co tu giac CHMF,MHIB noi tiep
nen suy ra \(\widehat{CHF}=\widehat{CMF},\widehat{BHI}=\widehat{BMI}\) (1)
ma \(\widehat{MCF}=\widehat{MBI}\) (tu giac ABMC noi tiep)
=> \(\widehat{CMF}=\widehat{BMI}\) phu 2 goc bang nhau (2)
tu (1),(2) => \(\widehat{CHF}=\widehat{BHI}\) => H,I,F thang hang
cho tam giác ABC đều nội tiếp đường tròn (O,R ) .Trên cung nhỏ BC lấy M .Trên tia MA lấy D saop cho MD=MC
a) tính MDC
B) CM BM=AD
c) tính S của hình giới hạn bởi các cạnh của tam giác và đường tròn (O) theo R
d) từ M hạ MI ,MH ,MF vuông góc với AB BC CA .CM H,I,F thẳng hàng
Xác định tham số m để hpt \(\hept{\begin{cases}mx+4y=2m+3\\2x+y=m-1\end{cases}}\)có vô sô nghiệm