Tìm x,y,z biết : \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}\) ( x,y,z khác o )
Tìm x,y,z biết: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)(x,y,z khác 0)
Dùng tính chất tỉ lệ thức:
x+y+z = 0\(\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=0\Rightarrow x=y=z=0\)
Áp dụng tính chất tỉ lệ thức:
\(x+y+z=\frac{x}{\left(y+z+1\right)}=\frac{y}{\left(x+z+1\right)}=\frac{z}{\left(x+y-2\right)}=\left(\frac{x+y+z}{2x+2y+2z}\right)=\frac{1}{2}\)
=> x+y+z = \(\frac{1}{2}\)
+) \(2x=y+z+1=\frac{1}{2}-x+1\Rightarrow x=\frac{1}{2}\)
+) \(2y=x+z+1=\frac{1}{2}-y+1\Rightarrow y=\frac{1}{2}\)
+) \(z=\frac{1}{2}-\left(x+y\right)=\frac{1}{2}-1=\frac{-1}{2}\)
TA CÓ: \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{z+y+1+x+z+1+x+y-2}=\frac{1.\left(x+y+z\right)}{\left(1+1-2\right)+2x+2y+2z}\)
\(=\frac{1.\left(x+y+z\right)}{0+2.\left(x+y+z\right)}=\frac{1.\left(x+y+z\right)}{2.\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\frac{x}{z+y+1}=\frac{1}{2}\)\(\Rightarrow2x=z+y+1\)\(\Rightarrow3x=x+z+y+1\)\(\Rightarrow3x=\frac{1}{2}+1\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(\frac{y}{x+z+1}=\frac{1}{2}\)\(\Rightarrow2y=x+z+1\Rightarrow3y=y+x+z+1\Rightarrow3y=\frac{1}{2}+1=\frac{3}{2}\Rightarrow y=\frac{1}{2}\)
\(\frac{z}{x+y-2}=\frac{1}{2}\)\(\Rightarrow2z=x+y-2\Rightarrow3z=x+y+z-2\Rightarrow3z=\frac{1}{2}-2=\frac{-3}{2}\Rightarrow z=\frac{-1}{2}\)
VẬY X= 1/2; Y= 1/2 ; Z= -1/2
CHÚC BN HỌC TỐT!!!!!!
\(\frac{x}{y+2+1}=\frac{y}{x+2+1}=\frac{z}{x+y-2}=x+y=z\)
biết x,y,z khác 0
Tìm y
sorry mấy bạn =x+y+z chứ ko phải =x+y=z :P
Cho x,y,z khác 0: x+y+z khác 0 và
\(\frac{x-y-z}{x}=\frac{-x+y-z}{y}=\frac{-x-y+z}{z}\)
Tìm \(A=\left(1+\frac{y}{x}\right)\left(1+\frac{z}{y}\right)\left(1+\frac{x}{z}\right)=?\)
\(\frac{y+z}{x}=\frac{x+z}{y}=\frac{x+y}{z}\Rightarrow k=2\Rightarrow x=y=z=1\)
A=6
\(\frac{x-y-z}{x}=1-\frac{y+z}{x}\) tương tự con khác
=> x=y=z
=> A=6
Tìm x,y,z biết:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-z}{z}=\frac{1}{x+y+z}\)
y+x+z bằng bao nhiêu mới tính ra được chứ?? sai đề à??
Tìm x,y,z:
\(\frac{x}{z+y+1}=\frac{y}{z+x+1}=\frac{z}{x+y+1}\)= x+y+z
(x,y,z khác 0)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x}{z+y+1}=\frac{y}{z+x+1}=\frac{z}{x+y+1}=x+y+z=\frac{x+y+z}{2\left(x+y+z\right)+3}\)
\(\Rightarrow\left(x+y+z\right)\left(1-\frac{1}{2\left(x+y+z\right)+3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=0\\2\left(x+y+z\right)+3=1\end{cases}\Rightarrow\orbr{\begin{cases}x+y+z=0\\x+y+z=-1\end{cases}}}\)
Vậy mọi số x,y,z thỏa mãn \(\orbr{\begin{cases}x+y+z=0\\x+y+z=-1\end{cases}}\) đều thỏa mãn bài toán
sao ( x+y+x)(1-1/2(x+y+z)+3)= 0 ha ban.. mk thay cu sai sai... o cho 1-1/2(x+y+z)+3
Tìm x, y, z biết: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{\left(y+z+x+z+x+y\right)+\left(1+2-3\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)
\(\frac{2x+2y+2x}{x+y+z}\)=\(\frac{1}{x+y+z}\)
2=\(\frac{1}{x+y+z}\)(1)
Từ(1) => \(\frac{1}{x+y+z}\)=2 => x+y+z=0,5=>x+z=0,5-y(2)
Từ(1)=> x+y+1=2x(3)
x+z+2=2y(4)
z+y-3=2z(5)
Thay(2) vào (4) ta được: 0,5-y+2=2y
=> 2,5=3y
=> y=\(\frac{5}{6}\)
Thay y=\(\frac{5}{6}\)vào(3) ta được:x+\(\frac{5}{6}\)+1=2x
\(\frac{11}{6}\)=x
Thay x=\(\frac{11}{6}\); y=\(\frac{5}{6}\)vào x+y+z=0,5 ta đươc:
\(\frac{11}{6}\)+\(\frac{5}{6}\)+z=0,5
z=\(\frac{-13}{6}\)
Vậy ............
chúc bn học tốt.
k cho mik nha
tìm x,y,z biết : \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Tìm x,y,z biết:\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)
ta có:
Th1: x+y+z=0
suy ra: x/y+z+1=0 suy ra: x=0
tương tự: y/z+x+1=0 => y=0
z/x+y-2=0 => z=0
suy ra: x=0;y=0;z=0
Th2: x+y+z khác 0
áp dụng tính chất của dãy tỉ số bằng nhau
=> x/y+z+1=y/z+x+1=z/x+y-2=x+y+z/y+z+1+z+x+1+x+y-2=x+y+z/2.(x+y+z)=1/2
suy ra: x+y+z=1/2
x/y+z+1=1/2 => x+x=y+z+1 => x+x+x=x+y+z+1 => 3x=1/2+1 => 3x=3/2 => x=1/2
y/z+x+1=1/2 => y+y=z+x+1 => y+y+y=z+x+y+1 => 3y=1/2+1 => 3y=3/2 => y=1/2
z/x+y-2=1/2 => z+z=x+y-2 => z+z+z=x+y+z-2 => 3z=1/2-2 => 3z=-3/2 => y=-1/2
Tìm x,y,z biết\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
Đặt \(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{x+y+z}{\left(y+z+1\right)+\left(x+z+1\right)+\left(x+y-2\right)}=\frac{\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\x+z+1=2y\\x+y-2=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\\\frac{3}{2}=3y\Rightarrow y=\frac{1}{2}\\-\frac{3}{2}=3z\Rightarrow z=-\frac{1}{2}\end{cases}}\)
Vậy \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)