Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan thị minh anh
Xem chi tiết
o O o Tiểu Thư Dễ Thương...
7 tháng 10 2016 lúc 20:18

@NTMH

Lightning Farron
15 tháng 2 2017 lúc 18:39

Ta chứng minh \(P\ge\frac{9}{2}\). Ta đã có: \(\frac{a^3+b^3+c^3}{2abc}\ge\frac{3abc}{2abc}=\frac{3}{2}\)

Vậy cần chứng minh \(\frac{a^{2}+b^{2}}{c^{2}+ab}+\frac{b^{2}+c^{2}} {a^{2}+bc}+\frac{c^{2}+a^{2}}{b^{2}+ac}\geq 3\)

\(\Leftrightarrow a^{2}(\frac{1}{c^{2}+ab}+\frac{1}{b^{2}+ac)}+b^{2}(\frac{1}{c^{2}+ab}+\frac{1}{a^{2}+bc})+c^{2}( \frac{1}{a^{2}+bc}+\frac{1}{b^{2}+ac})\)

\(\geq \frac{4a^{2}}{(a+b)(b+c)}+\frac{4b^{2}}{(c+a)(c+b) }+\frac{4c^{2}}{(a+b)(a+c)}\)

\(\geq \frac{4(a+b+c)^{2}}{(a+b)(b+c)+(c+a)(c+b)+(a+c)(a+ b)}\geq 3\)

BĐT đã được chứng minh

Vậy ta có \(P_{min}=\frac{9}{2}\) khi \(a=b=c\)

Làm gì mà căng
Xem chi tiết
HD Film
16 tháng 10 2019 lúc 21:45

\(\frac{a}{b^2+bc+c^2}+\frac{b}{c^2+ca+a^2}+\frac{c}{a^2+ab+b^2}=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{bc^2+abc+ba^2}+\frac{c^2}{ca^2+abc+cb^2}\)     (1)

Áp dụng BDT Cauchy-Schwarz: \(\left(1\right)\ge\frac{\left(a+b+c\right)^2}{ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc}\)

Lại có: \(ab^2+ac^2+ba^2+bc^2+ca^2+cb^2+3abc=\left(ab+bc+ac\right)\left(a+b+c\right)\)

Thay vào -> dpcm

Làm gì mà căng
Xem chi tiết
Kudo Shinichi
17 tháng 10 2019 lúc 21:03

\(VT=\frac{a^2}{ab^2+abc+ac^2}+\frac{b^2}{c^2b+abc+a^2b}+\frac{c^2}{a^2c+abc+b^2c}\)

Áp dụng BĐT Cauchy dạng phân thức 

\(\Rightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)

\(\Leftrightarrow VT\ge\frac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}\)

\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)

\(\Leftrightarrow VT\ge\frac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)

Dấu "=" xảy ra khi a=b=c

Chúc bạn học tốt !!!

Nguyễn Đặng Bảo Trâm
Xem chi tiết
Bá đạo sever là tao
11 tháng 7 2017 lúc 11:55

ÁP dụng BĐT AM-Gm  ta có: 

\(Σ\frac{a^2}{\left(ab+2\right)\left(2ab+1\right)}\ge\frac{4}{9}\cdotΣ\frac{a^2}{\left(ab+1\right)^2}\)

ĐẶt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\) thì cần cm

\(Σ\frac{a^2}{\left(ab+1\right)^2}=Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{3}{4}\)

\(Σ\left(\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\left(\frac{xz}{y\left(x+z\right)}\right)^2\)

Theo C-S \(Σ\frac{xz}{y\left(x+z\right)}=\frac{\left(xz\right)^2}{xyz\left(x+z\right)}\ge\frac{\left(Σxy\right)^2}{2xy\left(Σx\right)}\ge\frac{3}{2}\)

\(\frac{1}{3}\cdot\left(Σ\frac{xz}{y\left(x+z\right)}\right)^2\ge\frac{1}{3}\cdot\frac{9}{4}=\frac{3}{4}\)

Đúng hay ta có ĐPCM xyar ra khi a=b=c=1

Cuồng Song Joong Ki
Xem chi tiết
NGUYỄN MINH HUY
Xem chi tiết
Etermintrude💫
15 tháng 3 2021 lúc 19:00

undefined

Hỏi Làm Gì
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 9 2016 lúc 12:23

Bài 1. Từ giả thiết suy ra 1-a = b+c và áp dụng \(\left(x+y\right)^2\ge4xy\) 

Ta có : \(4\left(1-a\right)\left(1-b\right)\left(1-c\right)=4\left(b+c\right)\left(1-c\right)\left(1-b\right)\le\left[\left(b+c\right)+\left(1-c\right)\right]^2\left(1-b\right)\)

\(=\left(b+1\right)^2\left(1-b\right)=\left(b+1\right)\left(1-b^2\right)=-b^2\left(b+1\right)+\left(b+1\right)\le b+1=a+2b+c\)

Lê Thị Hải Anh
Xem chi tiết
alibaba nguyễn
12 tháng 11 2018 lúc 14:27

Gọi \(S=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+ab+c^2}+\frac{a^3}{c^2+ab+a^2}\)

Dễ thấy \(P-S=0\)

\(\Rightarrow2P=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+ab+c^2}+\frac{c^3+a^3}{c^2+ab+a^2}\)

Ta chứng minh: 

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{a+b}{3}\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)

\(\Rightarrow2P\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\)

\(\Rightarrow P\ge1\)

phulonsua
5 tháng 9 2021 lúc 18:08

P-S=0 ?? =))

Khách vãng lai đã xóa
Phan Văn Đức
Xem chi tiết
Bùi Thị Vân
20 tháng 8 2016 lúc 8:49

- Ta có: \(b.c< b^2+c^2\), Suy ra:
\(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}>\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{a^2}{a^2+b^2+c^2}=1\).
Vậy: \(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}>1\).
- Giả sử \(a\le b\le c.\)Ta có:
\(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}< \frac{a^2}{a^2+b^2}+\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\)
                                                          \(=\frac{a^2+b^2}{a^2+b^2}+\frac{c^2}{c^2+a^2}=1+\frac{c^2}{c^2+a^2}< 1+\frac{c^2}{c^2}=2\).
Vậy: \(\frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}< 2.\)
Vậy ta chứng minh được:
\(1< \frac{a^2}{a^2+bc}+\frac{b^2}{b^2+ac}+\frac{c^2}{c^2+ab}< 2.\)

Tuấn
20 tháng 8 2016 lúc 15:56

AD cho h ỏi olm của mình bị làm sao vạy ? gửi cau hỏi k đc. đc k k lên điểm ?

Boy9x Đẹp Toàn Phần
20 tháng 8 2016 lúc 16:28

Tự ra câu hỏi tự trả lời thế hỏi làm j ?