Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đại Nghĩa
Xem chi tiết
Edogawa Conan
1 tháng 12 2019 lúc 15:46

Đặt \(\frac{x}{2012}=\frac{y}{2013}=\frac{z}{2014}=k\)=> \(\hept{\begin{cases}x=2012k\\y=2013k\\z=2014k\end{cases}}\)

khi đó, ta có: (x - z)3 =  (2012k - 2014k)3 = (-2k)3 = -8k3

 8(x - y)2(y - z) = 8(2012k - 2013k)2(2013 - 2014k) = 8(-k)2.(-k) = -8k3

=> (x - z)3 = 8(x - y)2(y - z)

Khách vãng lai đã xóa
Hiếu Mình Là
Xem chi tiết
Phạm Thị Phương Thảo
Xem chi tiết
Trần Bảo Khang
Xem chi tiết
Nguyễn Việt Hoàng
17 tháng 11 2019 lúc 16:15

Do  \(\hept{\begin{cases}\left|2x-4\right|^{2011}\ge0\\\left(y+2013\right)^{2012}\ge0\end{cases}}\) nên để \(\left|2x-4\right|^{2011}+\left(y+2013\right)^{2012}=0\)thì : 

\(\hept{\begin{cases}\left|2x-4\right|^{2011}=0\\\left(y+2013\right)^{2012}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-4=0\\y+2013=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x=4\\y=-2013\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-2013\end{cases}}}\)

Vậy x = 2 ; y = -2013

Khách vãng lai đã xóa
lili
17 tháng 11 2019 lúc 16:15

Có /2x-4/^2011 luôn >=0 với mọi x

(y+2013)^2012 >= 0 với mọi y

Mà tổng lại =0

=> ''='' xảy ra <=> 2x-4=0 và y+2013=0

<=> x=2 và y=-2013.

Vậy x=2 và y=-2013.

Khách vãng lai đã xóa
Nguyễn Vũ Minh Hiếu
17 tháng 11 2019 lúc 18:44

Ta có : \(\left|2x-4\right|^{2011}\ge0\forall x\)

            \(\left(y+2013\right)^{2012}\ge0\forall y\)

Khi \(\hept{\begin{cases}2x-4=0\\y+2014=0\end{cases}\Rightarrow\hept{\begin{cases}2x=4\\y=2014\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=2014\end{cases}}}\)

Vậy ............

Khách vãng lai đã xóa
Vân Nguyễn Thị
Xem chi tiết
Nguyễn Hoàng Minh
20 tháng 11 2021 lúc 14:56

Áp dụng tc dtsbn:

\(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-z}{-2}=\dfrac{y-z}{-1}=\dfrac{x-y}{-1}\\ \Leftrightarrow\dfrac{x-z}{2}=\dfrac{y-z}{1}=\dfrac{x-y}{1}\\ \Leftrightarrow x-z=2\left(y-z\right)=2\left(x-y\right)\\ \Leftrightarrow\left(x-z\right)^3=8\left(x-y\right)^3=8\left(x-y\right)^2\left(x-y\right)=8\left(x-y\right)^2\left(y-z\right)\)

Nguyễn Ngọc Mai Linh
Xem chi tiết
Đoàn Cẩm Ly
14 tháng 8 2016 lúc 16:47

Vì \(\left(x-3\right)^{2012}\ge0\)

\(\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\Rightarrow\)\(\hept{\begin{cases}3y-12=0\\x-3=0\end{cases}}\)\(\hept{\begin{cases}y=4\\x=3\end{cases}}\)

Vậy cặp( x,y) cần tìm là (3,4)

Nguyễn Tuấn Minh
14 tháng 8 2016 lúc 16:47

2 số hạng đều có số mũ chẵn nên chúng luôn lớn hơn hoặc=0

Vậy ta suy ra được cả 2 số đều bằng 0

Có (x-3)2012=0  =>x-3=0  =>x=3

Có ( 3y-12)2014=0  =>3y-12=0   =>3y=12  =>y=4

Vậy x=3, y=4

Nguyễn Ngọc Mai Linh
14 tháng 8 2016 lúc 16:51

Cảm ơn bn nhiều nha! Chúc bn học giỏi!

Caitlyn_Cảnh sát trưởng...
Xem chi tiết
Lê Chí Cường
22 tháng 10 2015 lúc 22:43

Ta thấy:\(\left(x-3\right)^{2012}=\left(\left(x-3\right)^{1006}\right)^2\ge0\)

\(\left(3y-12\right)^{2014}=\left(\left(3y-12\right)^{1007}\right)^2\ge0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\)

mà \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)

=>\(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)

=>\(\left(x-3\right)^{2012}=0=>x-3=0=>x=3\)

\(\left(3y-12\right)^{2014}=0=>3y-12=0=>3y=12=>y=4\)

Vậy x=3,y=4

Nguyễn Văn Phước
Xem chi tiết
Hoàng Xuân Ngân
Xem chi tiết
Mây
4 tháng 1 2016 lúc 17:57

Ta có : \(\left(x-3\right)^{2012}\ge0\)  với mọi x

             \(\left(3y-12\right)^{2014}\ge0\) với mọi y

=> \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\ge0\)  Với mọi x, y

Để \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}\le0\)

=> \(\left(x-3\right)^{2012}+\left(3y-12\right)^{2014}=0\)

=> \(\left(x-3\right)^{2012}=0\)               Và   \(\left(3y-12\right)^{2014}=0\)

=> \(x-3=0\)                                 Và     \(3y-12=0\)

=> \(x=3\)                                               Và     \(3y=12\)

=> \(x=3\)                                               Và     \(y=4\)

Vậy cặp số (x;y) thỏa mãn là (3;4)

Uzumaki Naruto
4 tháng 1 2016 lúc 17:39

478

Mấy đại ca làm ơn tick giùm em 8 cái em đang rất cần

Hyuuga Neji
4 tháng 1 2016 lúc 17:43

478,ủng hộ mình mọi người ơi