CMR: \(x^n-y^n⋮x^m-y^m\)thì \(n⋮m\)
cho x=m/n thuộc Q
m,n thuộc N* , m>n
y=m^2/n^2
CMR x<y
Xét hiệu \(x-y=\dfrac{m}{m}-\dfrac{m^2}{n^2}=\dfrac{mn^2-m^3}{mn^2}\)
Mà m > n nên \(mn^2< m^3\), suy ra x - y < 0 hay x < y
CMR nếu x,y thuộc N thì ( x+2y)M <=> (3x - 4y)M
Giúp mk vs
Cho P=5x+y+1 ; Q=3x-y+4
cmr Nếu x=m;y=n(vs m,n thuộc N) thì P nhân Q là số chẵn
+) Nếu x,y cùng chẵn thì Q chẵn
Lúc đó P.Q chẵn
+) Nếu x chẵn, y lẻ thì 5x + y + 1 chẵn nên P.Q chẵn
+) Nếu x lẻ, y chẵn thì 5x + y + 1 chẵn nên P.Q chẵn
Nếu m,n cùng chẵn
⇒ Q chẵn
⇒ P.Qchẵn
Nếu m,ncùng lẽ
⇒ Q chẵn
⇒ P.Q chẵn
Nếu m,n có tính chẵn lẻ khác nhau
⇒ P chẵn
⇒ P.Q chẵn
cho x, y, m, n, thuộc Z thoa mãn đẳng thức x + y = m + n . CMR S = x^2 + y^2 + m^2 + n^2 là tổng bình phương 3 số nguyên
Cho m, n, x là các số chính phương. CMR: (m - n)(n - y)(y - m) chia hết cho 12
cho x(m+n)=y(n+p)=z(p+m). trong đó x,y,z là các số khác nhau và khác 0.
CMR: \(\frac{m-n}{x\left(y-z\right)}=\frac{n-p}{y\left(z-x\right)}=\frac{p-m}{z\left(x-y\right)}\)
Cho 2 đa thức A = 5x + y + 1 và B = 3x - y + 4
CMR: nếu x = m; y = n với m và n là số tự nhiên thì tích A.B là 1 số chẵn
Áp dụng tính chất:chẵn ± lẻ = lẻ
Ta có:\(A+B=\left(5x+y+1\right)+\left(3x-y+4\right)\)
\(=\left(5x+3y\right)+\left(y-y\right)+\left(1+4\right)\)
\(=8x+5\)vì x,y là số tự nhiên.
Suy ra một trong 2 số A or B là số chẵn.
Giả sử A là số chẵn.
\(\Rightarrow A\)có dạng \(2k\)với \(k\inℕ\)
Áp dụng tính chất chẵn × lẻ = chẵn hoặc chẵn × chẵn = chẵn \(\Rightarrow A.B=2k\cdot B\)luôn luôn chẵn.
\(\Rightarrowđpcm\)
Cho \(\left\{{}\begin{matrix}m,n>0\\x^2+y^2=1\\\dfrac{x^2}{m}+\dfrac{y^2}{n}=\dfrac{1}{m+n}\end{matrix}\right.\)
CMR \(\dfrac{x^{1005}}{m^{1004}}+\dfrac{y^{1005}}{n^{1004}}=\dfrac{1}{\left(m+n\right)^{1004}}\)
Cho y(n+p)=z(p+m) trong đó x,y,z là 3 số khác nhau và khác 0 CMR: (m-n)/x(y-z)=(n-p)/y(z-x)=(p-m)/z(x-y).
giúp suli với các bn nekkkkkkkkkkkkk