Cho tam giác ABC cân tại A. Trên BC lấy 2 điểm M, N sao cho BM = MN = NC = \(\frac{1}{3}\) BC. Hai tia phân giác của 2 góc AMC và ACB cắt nhau tại I. Gọi E là giao điểm của tia phân giác góc ACB với AN. CMR: E nằm giữa 2 điểm C và I.
Cho tam giác ABC cân tại A. Trên BC lấy 2 điểm M, N sao cho BM = MN = NC = \(\frac{1}{3}\)BC. CMR: a)\(\widehat{MAN}>\widehat{BAM}\)
b) Hai tia phân giác của 2 góc AMC và ACB cắt nhau tại I. Gọi E là giao điểm của tia phân giác góc ACB với AN. CMR: E nằm giữa 2 điểm C và I.
c) Qua I, kẻ đường thẳng song song với BC cắt AM và AC lần lượt tại P và Q. CMR: PQ < BC.
Gọi H là trung điểm của BC. Trên tia đối của tia AM lấy K sao cho AM=MK
Xét \(\Delta AMN\)và \(\Delta KMB\)có\(\hept{\begin{cases}AM=MK\\\widehat{AMN}=\widehat{KMB}\\MB=MN\end{cases}}\)
\(\Rightarrow\Delta AMN=\Delta KMB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAN}=\widehat{MKB}\)
\(\Rightarrow AN=BK=AM\)
mà \(AB>AM\Rightarrow AB>BK\)
\(\Rightarrow\widehat{BKA}>\widehat{BAK}\)
\(\Rightarrow\widehat{MAN}>\widehat{BAM}\)
Trên tia đồi của tia MA lấy điểm D sao cho: MA=MD
Ta có tam giác ABC cân tại A nên:\(\widehat{ACB}=\widehat{ABC}\text{ mà:}\widehat{ANM}>\widehat{ACN}\left(\text{góc ngoài}\right)\Rightarrow\widehat{ANM}>\widehat{ABN}\Rightarrow AN< AB\)
mặt khác:
\(\Delta AMN=\Delta DMB\left(c.g.c\right)\Rightarrow AN=BD< AB\Rightarrow\widehat{BAM}>\widehat{BDM};\widehat{MAN}=\widehat{BDM}< \widehat{BAM}\)
nhầm 1 tí ạ BD<AB => ^BAM<^BDM;^MAN=^BDM<^BAM
Cho tam giác ABC cân tại A. Trên BC lấy 2 điểm M, N sao cho BM = MN = NC = \(\frac{1}{3}\) BC. CMR: a)\(\widehat{MAN}>\widehat{BAM}\)
b) Hai tia phân giác của 2 góc AMC và ACB cắt nhau tại I. Gọi E là giao điểm của tia phân giác góc ACB với AN. CMR: E nằm giữa 2 điểm C và I.
c) Qua I, kẻ đường thẳng song song với BC cắt AM và AC lần lượt tại P và Q. CMR: PQ < BC.
1)Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và C cắt nhau ở I. Kẻ IH vuông góc với BC(H thuộc BC). Biết HI=1cm, HB=2cm, HC=3cm. Tính chu vi tam giác ABC
2) Cho tam giác ABC có góc B lớn hơn góc C, đường phân giác AD. Gọi H là chân đường vuông kẻ từ A đến BC. Chứng minh rằng góc HAD bằng nửa hiệu của hai góc B và góc C.
3)Cho tam giác ABC vuông tại A. Lấy điểm D trên cạnh AB sao cho góc ACD=1/3 góc ACB. Lấy điểm E trên cạnh AC sao cho ABE=1/3 góc ACB. BE và CD cắt nhau tại O. Gọi k là giao điểm các đương phân giác của tam giác OBC. Tam giác DEK là tam giác gì?
4) Tam giác ABC có góc A bằng 100 độ. Gọi CD là tia đối của tia CB. Tia phân giác của góc B cắt tia phân giác của góc ACD tại K. Tính số đo góc BAK
a. cho tam giác ABC , qua giao điểm I các đường phân giác góc B và C của tam giác ABC, vẽ đường thẳng song song với BC, cắt các đường thẳng AB,AC lầ lượt tại M,N. chứng minh MN=MB+NC.
b.kết luận trên thay đổi ra sao nếu I là giao điểm 2 phân giác của góc ngoài tại đỉnh B và C?
c. kết luận trên thay đổi ra sao nếu I là giao điểm của tia phân giác của góc ngoài góc B và tia phân giác của góc ACB
Cho tam giác ABC vuông tại A, vẽ AH vuông góc với BC. Trên cạnh BC lấy điểm N sao cho BN = BA, trên cạnh BC lấy điểm M sao cho CM = CA. Tia phân giác góc ABC cắt AM tại I và cắt AN tại D, tia phân giác góc ACB cắt AN tại K và AM tại E. Gọi O là giao điểm của BD và CE. Chứng minh:
a. BD vuông góc với AN, CE vuông góc với AM
b. BD song song với MK
c. IK = OA
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác abc cân tại a trên cạnh BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM=CM, các đường thẳng vuông góc với BC kẻ từ M và N cắt AB và AC lần lượt tại D và E, đương thẳng DE cắt BC tại I. Gọi O là giao điểm của đường phân giác góc A với đường thẳng vuông góc với AC tại C. CMR: a, DM=EN b, I là trung điểm của DE c,Tam giác BAC=Tam giác COE d, OI vuông góc với DE
1.Cho tâm giác ABC vuông tại A. Tia phân giác của B cắt AC tại E, trên BC lấy F sao cho BF=BA.
a. CM tâm giác ABE=tâm giác FBE
b.CM EF vuông góc BC
c.Trên tia đối của EF lấy M sao cho EM=EC. CM 3 điểm B,A,M thẳng hàng.
2.Cho tam giác ABC có AB=AC. Trên AB lấy D, trên tia đối của CA lấy E sao cho BD=CE. Gọi I là trung điểm của BE. CM 3 điểm B,I,E thẳng hàng.
3. Cho tam giác ABC có goác A=60 độ. TIa phân giác goc ABC cắt AC tại E, tia phân giác góc ACB cắt AB tại F. Gọi I là giao điểm của BE và CF. CM rằng IE=IF