Tìm a thuộc Z sao cho :
a^2+a+2 chia hết a+1
Tìm a thuộc Z sao cho S= a +1 chia hết cho ( a-2) ( a khác 2)
a + 1 chia hết cho a - 2
a - 2 + 3 chia hết cho a - 2
a - 2 chia hết cho a - 2
3 chia hết cho a - 2
a - 2 thuộc U(3) = {-3;-1;1;3}
a - 2 = -3 => a= -1
a - 2 = -1 => a= 1
a - 2 =1 => a= 3
a - 2 = 3 => a= 5
Tìm số a thuộc Z sao cho 2×a-1 chia hết cho a+4
2a-1 chia hết cho a+4
suy ra 2(a+4)-5 chia hết cho a+4
suy ra 5 chia hết cho a+4 suy ra a+4 thuộc Ư(5)={1,5}(cộng trừ 1và 5)
suy ra a={-3,-5,1,-9}
1)Tìm các số nguyên dương x,y,z sao cho
x+3=2y
3x+1=4z
2) Tìm a,b thuộc Z sao cho
a+2 chia hết cho b và b+3 chia hết cho a
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
Ta thấy y=0; 1 không phải là nghiệm của bài toán.Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.Với y>=3 thì:Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
Thay vào (1) ta có: \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\) Bạn phải hiểu một điều đơn giản: với người khác thì vấn đề của họ có ưu tiên số 1. Bạn cần gấp không có nghĩa là họ phải vứt việc của họ để chạy tới giúp. Vì mình có phải cái rốn của vũ trụ đâu. Đấy là chưa kể có người bó tay, có người không muốn giúp.
Mà bạn đóng 1 chủ đề đi. 1 vấn đề thì mở 2 chủ đề để làm gì?
------
Có thể bạn sẽ nói: tôi không cần nữa, nhưng tôi gửi lên vì có thể ai đó cũng quan tâm.
Tôi dùng phương pháp "cần cù"
---------------
1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3)
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13.
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên)
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13)
2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0.
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y.
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên)
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7)
3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y.
Ta đặt y1 = - y > 0.
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x.
3a. y1 ≤ x
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3)
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên)
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2)
3b. x < y1
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3)
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên)
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7)
Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2)
-------------
Kết luận: tất cả các nghiệm:
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4)
bài 1 : chứng tỏ rằng P=4a2+4a chia hết cho 8
bài 2 : tìm a thuộc Z sao cho Q=a+7 chia hết cho a (a không bằng 0)
bài 3 : tìm a thuộc Z sao cho S=a+1 chia hết cho a-2 ( a không bằng 2)
Bạn nào giải được bài nào ( 1 bài cũng được ) thì giúp mình nhé!
Nhờ các bạn viết chi tiết lời giải giúp mình luôn nhé!
Bài 2:Ta có:\(a+7⋮a\)
\(\Rightarrow7⋮a\)
\(\Rightarrow a\inƯ\left(7\right)\)
\(Ư\left(7\right)=1;-1;7;-7\)
Suy ra \(a\in1;-1;7;-7\)
bà 3:\(a+1⋮a-2\)
\(a-2+3⋮a-2\)
\(3⋮a-2\)
\(\Rightarrow a-2\inƯ\left(3\right)\)
\(Ư\left(3\right)=1;3\);-1;-3
Suy ra:\(a\in3;5;1;-1.\)
Bài 1 Tìm n thuộc Z sao cho
a) (3n-9) chia hết (n-2)
b) (-4n+7) chia hết (2n+3)
c) (n mũ 2-2n+3) chia hết (n+3)
Bài 2 Tìm x thuộc Z sao cho
a) x mũ 3-x=0
b) (2x-5)-3(x+2)=-17
Bài 3 Cho a chia hết cho m, b chia hết cho m, c chia hết cho m.Với a,b,c,m thuộc Z chứng minh rằng (a+b-c) chia hết cho m
Bài 4 Cho góc A và góc B là 2 góc bù nhau. Biết hai góc A=ba góc B.Tính góc A, góc B
3n-9/n-2=3(n-2+7)/3(n-2)=1+7/n-2
=> n-2 thuộc ước của 7={+-1;+-7)
=> n-2 =-1=>n=1
n-2=1=>n=3
n-2=-7=> n=-5
n-2=7=>n=9 (mình không chắc đúng nha! :) )
Tìm a biết a thuộc Z sao cho
a,2a^2+4a+5 chia hết a+2
b,4a^3+14a^2+6a+12 chia hết 2a+1
Ta có:
2a2+4a+5
=2a.(a+2)+5
Vì 2a.(a+2) chia hết cho a+2
=>5 chia hết cho a+2
=>a+2 thuộc Ư(5)
=>tự lm
Bài 1: Chứng minh rằng: Nếu 6x+ 11y chia hết cho 31 thì x + 7y chia hết cho 31; x , y thuộc Z
Bài 2: Cho a, b thuộc Z ( a khác 0, b khác 0)
Chứng minh rằng: Nếu a chia hết cho b và b chia hết cho a thì a = b, a = -b
Bài 3: Tìm n thuộc Z sao cho:
a, n2 + 3n - 13 chia hết cho n + 3
d, n2 + 3 chia hết cho n - 1
HELP ME............................
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm x thuộc Z sao cho:
a) 6 chia hết cho x
b) 8 chia hết cho x +1;
c) 10 chia hết cho x - 2.
a) x Î Ư(6) = {-6; -3; -2; -l; l; 2; 3; 6}.
b) x + l Î Ư (8) = {- 8; -4; -2; -1; 1; 2; 4; 8}. Từ đó tìm được
x Î{-9; -5; -3; -2; 0; 1; 3; 7}.
c) x - 2 Î Ư(10) = {-10; -5; - 2; -1; 1; 2; 5; 10). Từ đó tìm được
x Î {-8; -3; 0; l; 3; 5; 7; 12}.
Tìm x thuộc Z sao cho:
a) 6 chia hết cho x
b) 8 chia hết cho x +1;
c) 10 chia hết cho x - 2.