Tìm tất cả các số nguyên x, y thỏa mãn :
(x + 1)(x2 + 1) = (2y + 1)2
1. Tìm tất cả các số nguyên x, y thỏa mãn : x(2y+3)=y+1.
2. Tìm tất cả các số nguyên X thỏa mãn
a) (x+2) là bội của (×^2-7)
b) (-1)+3+(-5)+7+...+x=2002.
Giải giúp mình đi . Giải cụ thể nhé.
a)Tìm tất cả các cặp số nguyên x, y thỏa mãn:x(2y+3)=y+1
b) Tìm tất cả các số nguyên của x thỏa mãn:(-1)+3(-5)+7 ...+ x = 2002
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
tìm tất cả các cặp số nguyên (x, y) thỏa mãn: x(x2 - y) + (y - 3)(x2 + 1) = 0
Tìm tất cả các số nguyên x, y thỏa mãn x2+y2+xy-x-y=1
tìm tất cả các cặp số nguyên x, y thỏa mãn x2+x = 32019y+1
- Với \(y=0\Rightarrow x^2+x=3^0+1=2\)
\(\Rightarrow x^2+x-2=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
- Với \(y< 0\Rightarrow3^{2019y}\) không phải số nguyên \(\Rightarrow3^{2019y}+1\) không phải số nguyên (loại)
- Với \(y>0\Rightarrow3^{2019y}⋮3\Rightarrow3^{2019y}+1\) chia 3 dư 1
Mà \(x^2+x=x\left(x+1\right)\) là tích 2 số nguyên liên tiếp nên chia 3 chỉ có thể dư 0 hoặc 2
\(\Rightarrow x^2+x\ne3^{2019y}+1\) với mọi \(y>0\) \(\Rightarrow\) phương trình ko có nghiệm nguyên
Vậy pt đã cho có đúng 2 cặp nghiệm nguyên là \(\left(x;y\right)=\left(-2;0\right);\left(1;0\right)\)
@ Ha Dung vì khi y < 0 thì y = -k (k N)
⇒ 32019y = 3-2019k = ( N)
()2019k không phải là số nguyên vậy 32019y không phải là số nguyên em nhé.
Tìm tất cả các cặp số nguyên tố (x;y) thỏa mãn: x^2 - 2y^2=1
\(x^2-2y^2=1\)
\(\Leftrightarrow x^2=2y^2+1\)
Vì \(x^2\)là số chính phương lẻ
\(\Rightarrow x^2=2y^2+1⋮1\left(mod4\right)\)mà theo đề ra y là số nguyên tố
\(\Rightarrow y=2;x=3\)
1. Tìm tất cả các số nguyên tố x, y thỏa mãn: \(x^2-2y^2\)= 1
dễ thấy x phải là số lẻ
ta có \(x=2k+1\Rightarrow\left(2k+1\right)^2-2y^2=1\Leftrightarrow y^2=2k\left(k+1\right)\) nên k là ước của y
mà y là số nguyên tố nên k=1
nên \(\hept{\begin{cases}x=2k+1=3\\y^2=2k\left(k+1\right)=4\Rightarrow y=2\end{cases}}\)
Tìm tất cả các cặp số nguyên x , y thỏa mãn : x ( 2y+ 3) = x + 1
x ( 2y+ 3)=x+1
=> x(2y+3)-x=1
\(\Rightarrow x\left[\left(2y+3\right)-1\right]\)=1
suy ra 2 TH :
TH1:
\(\Rightarrow\hept{\begin{cases}x=1\\\left(2y+3\right)-1=1\end{cases}}\)
TH2:
\(\Rightarrow\hept{\begin{cases}x=-1\\\left(2y+3\right)-1=-1\end{cases}}\)
đoạn còn lại dễ nên em tự làm nốt nhé
Ta có :
x(2y+3) = x + 1
=>x(2y+3) - x =1
=>x(2y+3-1) = 1
=> x(2y-2) = 1
=> x,2y-2 thuộc ước của 1
\(\Rightarrow\hept{\begin{cases}x=1\\2y-2=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=1,5\end{cases}}}\)
nhầm nha bạn lộn dấu rồi
Tìm tất cả các cặp số nguyên x ,y thỏa mãn : x (2y +3) = y =1
Sửa đề: x( 2y + 3) = y+1
Do \(x\left(2y+3\right)=y+1\)
\(\Rightarrow y+1⋮2y+3\)
\(\Rightarrow2y+2⋮2y+3\)
\(\Rightarrow2y+3-1⋮2y+3\)
Vì \(2y+3⋮2y+3\)
\(\Rightarrow-1⋮2y+3\Rightarrow2y+3\inƯ\left(-1\right)=\left\{\pm1\right\}\)
nếu \(2y+3=-1\Rightarrow2y=-4\Rightarrow y=-2\)
\(\Rightarrow x.\left[2.\left(-2\right)+3\right]=-2+1\)
\(\Rightarrow-x=-1\Rightarrow x=1\)
nếu \(2y+3=1\Rightarrow2y=-2\Rightarrow y=-1\)
\(\Rightarrow x\left[2.\left(-1\right)+3\right]=-1+1\)
\(\Rightarrow x=0\)
Vậy \(x=1;y=-2\)hoặc \(x=0;y=-1\)
hok tốt!!
Tìm tất cả các cặp số nguyên x,y thỏa mãn:
x(2y+3)=y+1
\(x\left(2y+3\right)=y+1\)
\(=>2xy+3x-y-1=0\)
\(=>y.\left(2x-1\right)+\left(2x-1\right)=-x\)
\(=>\left(y+1\right).\left(2x-1\right)=-x\)
\(TH1:\orbr{\begin{cases}2x-1=-x\\y+1=1\end{cases}}=>\orbr{\begin{cases}2x+x=1\\y=0\end{cases}}\)
\(=>\orbr{\begin{cases}3x=1\\y=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{3}\\y=0\end{cases}}}\)(Ko thỏa mãn)
\(TH2:\orbr{\begin{cases}2x-1=1\\y+1=-x\end{cases}=>\orbr{\begin{cases}2x=2\\y+1=-x\end{cases}}}\)
\(=>\orbr{\begin{cases}x=1\\y+1=-1\end{cases}=>\orbr{\begin{cases}x=1\\y=-2\end{cases}}}\)(Thỏa mãn)
\(TH3:\orbr{\begin{cases}2x-1=-1\\y+1=x\end{cases}}=>\orbr{\begin{cases}2x=0\\y+1=x\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\y+1=0\end{cases}=>\orbr{\begin{cases}x=0\\y=-1\end{cases}}}\)(Thỏa mãn)
\(TH4:\orbr{\begin{cases}2x-1=x\\y+1=-1\end{cases}=>\orbr{\begin{cases}2x-x=1\\y=-1-1\end{cases}}}\)
\(=>\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)(Thỏa mãn)
Vậy ...